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ABSTRACT. The goal of this note is to provide a detailed proof for local boundedness esti-

mate near the boundary for weak solutions for second order elliptic equations with bounded

measurable coefficients subject to Neumann boundary condition.

1. INTRODUCTION AND MAIN RESULTS

The goal of this note is to provide a detailed proof for local boundedness estimates near

the boundary for weak solutions for second order elliptic equations in divergence form with

bounded measurable coefficients subject to Neumann boundary condition. Local Hölder conti-

nuity as well as local boundedness of weak solutions are very well known and usually referred

to as De Giorgi-Moser-Nash theory. There is rich literature regarding this theory; for ellip-

tic equations with Dirichlet boundary condition, one of most popular reference is a book by

Gilbarg and Trudinger [1]. In contrast to Dirichlet problem, literatures dealing with Neumann

(or conormal) problem are limited. This is partly because pure conormal problem, as com-

pared to oblique derivative problem, is easy to handle, and our guess is that experts might have

considered it unworthy of elaborating.

In a recent paper [2], we stated without proof that weak solutions of second order elliptic

equations in divergence form with measurable coefficients in a Lipschitz domain with smooth

conormal data on its boundary satisfy a certain local boundedness estimate. This statement is

of course well known to experts. However, it turned out that it is very hard to locate a specific

reference in the existing literature. There are a few classical and modern books discussing

conormal boundary conditions (for example, [3, 4, 5, 6]), but none of them contains the exact

local boundedness estimate as asserted in [2]; on the contrary, the corresponding estimate for

Dirichlet problem is easily found in [1, Theorem 8.25]. As a matter of fact, since the publication

of [2], we have received inquiries about its exact reference, and being unable to identify a
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satisfactory source, we reluctantly made a short note containing a detailed proof and circulated;

eventually, an idea of making it accessible to public occurred to us. By no means we claim this

note is original but we hope it serve as a good reference to non-experts.

Let Ω be a domain in Rd (d ≥ 2) such that Sobolev embedding and the trace embedding

are both available; i.e., if 1 ≤ p < d, then there exist positive constants γ0 = γ0(d, p,Ω) and

γ1 = γ1(d, p, ∂Ω) such that for any u ∈ W 1,p(Ω) we have

‖u‖Ldp/(d−p)(Ω) ≤ γ0‖u‖W 1,p(Ω) (1.1)

and

‖u‖Lp(d−1)/(d−p)(∂Ω) ≤ γ1‖u‖W 1,p(Ω), (1.2)

where we use notation

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) +

d∑
i=1

‖Diu‖Lp(Ω).

It is a well known fact that the above inequalities (1.1), (1.2) are satisfied when Ω is a bounded

Lipschitz domain.

In this note, we consider the Neumann problem{ −Di(a
ijDju) = divF − f in Ω,

(aijDju+ F i)ni = g on ∂Ω,
(1.3)

where aij are coefficients defined on Ω satisfying the uniform ellipticity and boundedness

condition

λ|ξ|2 ≤
d∑

i,j=1

aijξiξj ,
d∑

i,j=1

|aij |2 ≤ Λ2, (1.4)

for some positive constants λ and Λ. We of course assume the compatibility condition∫
Ω
f dx =

∫
∂Ω

g dσ if |Ω| < ∞. (1.5)

We say that u ∈ W 1,2(Ω) is a weak solution of (1.3) if the following identity holds:∫
Ω

(
aijDjuDiv + F iDiv + fv

)
dx =

∫
∂Ω

gv dσ, ∀v ∈ C1
c (Ω),

where C1
c (Ω) is the set of all C1 functions with compact support in Ω; if Ω is bounded, then

C1
c (Ω) agrees with C1(Ω).
We are now ready to state our main theorem.

Theorem 1.6. Let Ω ⊂ Rd be such that Sobolev embedding and trace inequalities (1.1), (1.2)

are available. Assume that

F ∈ Lp1(Ω)d, f ∈ Lp2(Ω), g ∈ Lp3(∂Ω),

where p1 > d, p2 > d/2, and p3 > d − 1. Let u ∈ W 1,2(Ω) be a weak solution of (1.3)

with conditions (1.4) and (1.5). Then u is locally bounded in Ω and there exists a positive
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constant C that can be determined quantitatively a priori only in terms of the set of parameters
{d, λ,Λ, p1, p2, p3} and Ω via the constants γ0 and γ1 such that for any x0 ∈ Ω and 0 < r ≤ 1,
we have

‖u‖L∞(Ωr/2) ≤ C
(
r−

d
2 ‖u‖L2(Ωr) + r

1− d
p1 ‖F ‖Lp1 (Ωr)

+ r
2− d

p2 ‖f‖Lp2 (Ωr) + r
1− d−1

p3 ‖g‖Lp3 (Σr)

)
. (1.7)

where we denote Ωr = Ω ∩Br(x0) and Σr = ∂Ω ∩Br(x0).

Finally, several remarks are in order.

Remark 1.8. We say that u ∈ W 1,2(Ω) is a weak sub-solution (super-solution) of (1.3) if the

following identity holds:∫
Ω

(
aijDjuDiv + F iDiv + fv

)
dx ≤ (≥ )

∫
∂Ω

gv dσ, ∀v ∈ C1
c (Ω).

The same proof of the theorem will show that if u is a weak sub-solution (super-solution) of

the Neumann problem (1.3), then the estimates (1.7) remains valid with u replaced by u+ =
max(u, 0) (u− = max(−u, 0)).

Remark 1.9. It should be clear from the proof that in the case when g ≡ 0, the constant C in

the theorem does not depend on the parameter γ1. Therefore, in the case when g ≡ 0, it is not

required to assume that the domain Ω enjoy the Sobolev trace inequality (1.2).

Remark 1.10. It should be also clear from the proof that (1.7) holds for any 0 < r ≤ r0, if we

allow the constant C to depend on r0 as well. In particular, if Ω is a bounded Lipschitz domain,

then we obtain condition (LB) of [2] with C1 = C1(d, λ,Λ,Ω, diamΩ).

Remark 1.11. If Ω is a Lipschitz epigraph domain (i.e., a domain above the graph of a Lipschitz

function ϕ : Rn−1 → R), then for 1 ≤ p < d we have

‖u‖Ldp/(d−p)(Ω) ≤ γ‖Du‖Lp(Ω)

where γ is a constant depending only on d, p, and the Lipschitz constant K of the domain (see

[2, Lemma 6.8]). Therefore, if g = 0, then the restriction r ≤ 1 is not needed in (2.3) and

(2.6). So, in the case when Ω is a Lipschitz epigraph domain, we also get the condition (LB’)

of [2] with C1 = C1(d, λ,Λ,K).

Remark 1.12. We say that u is a weak solution of{ −Di(a
ijDju) = divF − f in Ωr,

(aijDju+ F i)ni = g on Σr,
(1.13)

if the following identity holds for any v ∈ C1
c (Ωr ∪ Σr):∫

Ωr

(
aijDjuDiv + F iDiv + fv

)
dx =

∫
Σr

gv dσ.
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We note that the estimate (1.7) is local in nature. In fact, if u ∈ W 1,2(Ωr) is a weak solution

of (1.13), then the same proof will show that the estimate (1.7) still holds.

Remark 1.14. In addition to the local boundedness estimate (1.7) for a weak solution of (1.3),

local Hölder continuity estimate (near the boundary) is also available; we leave it to interested

reader to fill the details.

2. PROOF OF THE THEOREM

We prove the theorem by adapting the idea of De Giorgi. For n = 1, 2, . . ., we denote

rn =
r

2
+

r

2n
, kn = k

(
2− 1

2n−1

)
, An = {x ∈ Ωrn : u(x) > kn},

where k is a nonnegative constant to be chosen later. We denote

vn = (u− kn)+,

and let η = ηn be a smooth function in Rd satisfying

0 ≤ η ≤ 1, η ≡ 1 on Brn+1 , supp η ⊂ Brn , |Dη| ≤ 2n+2r−1.

By testing with η2vn in (1.3), we get∫
Ω
η2aijDjvnDivn dx = −

∫
Ω
aijDjvn2ηDiηvn dx

−
∫
Ω

(
F iη2Divn + F i2ηDiηvn

)
dx−

∫
Ω
fη2vn dx+

∫
∂Ω

gη2vn dσ.

By using the ellipticity and the properties of η, we get

λ

∫
An

η2|Dvn|2 dx ≤ 2Λ

∫
An

η|Dvn||Dη|vn dx

+

∫
An

|F |η|Dvn| dx+ 2

∫
An

|F ||Dη|vn dx+

∫
Ω
|f |ηvn dx+

∫
∂Ω

|g|ηvn dσ,

and thus, by Cauchy’s inequality and Hölder’s inequality, we have∫
An

η2|Dvn|2 dx ≤ C(λ,Λ)
4n

r2

∫
An

v2n dx

+ C(λ)

(∫
An

|F |2 dx+

∫
Ω
|f |ηvn dx+

∫
∂Ω

|g|ηvn dσ
)
. (2.1)

By Hölder’s inequality we get∫
An

|F |2 dx ≤ ‖F ‖2Lp1 (Ωr)
|An|1−

2
p1 . (2.2)
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When d > 2 we set p = 2 and when d = 2 we take any p ∈ [1, 2) satisfying 3
2 − 1

p2
≥ 1

p . Then

by Hölder’s inequality, (1.1), and Cauchy’s inequality, we have∫
Ω
|f |ηvn dx ≤ ‖f‖Ldp/(dp−d+p)(An)

‖ηvn‖Ldp/(d−p)(Ω)

≤ γ0‖f‖Lp2 (An)|An|1−
1
p
+ 1

d
− 1

p2 ‖ηvn‖W 1,p(Ω)

≤ γ0‖f‖Lp2 (An)|An|
1
2
+ 1

d
− 1

p2 ‖ηvn‖W 1,2(Ω)

≤ (γ20/4ε)‖f‖2Lp2 (Ωr)
|An|1+

2
d
− 2

p2 + ε‖ηvn‖2W 1,2(Ω) for any ε > 0,

where γ0 = γ0(d,Ω, p2). Let q = dp3/(dp3 − d+ 1). Then similarly we get∫
∂Ω

|g|ηvn dσ ≤ ‖g‖Lp3 (Σr)‖ηvn‖Lp3/(p3−1)(∂Ω) ≤ γ1‖g‖Lp3 (Σr)‖ηvn‖W 1,q(Ω)

≤ γ1‖g‖Lp3 (Σr)‖ηvn‖W 1,2(Ω)|An|
1
2
− d−1

dp3

≤ (γ21/4ε)‖g‖2Lp3 (Σr)
|An|1−

2(d−1)
dp3 + ε‖ηvn‖2W 1,2(Ω),

where γ1 = γ1(d,Ω, p3). On the other hand, we have

‖ηvn‖2W 1,2(Ω) =

∫
Ω
|ηvn|2 + |D(ηvn)|2 dx ≤

∫
Ω
|ηvn|2 + 2|Dη|2v2n + 2η2|Dvn|2 dx.

Therefore, we get (use r ≤ 1)∫
Ω
|f |ηvn dx+

∫
∂Ω

|g|ηvn dσ ≤ γ20
4ε

‖f‖Lp2 (Ωr)|An|1+
2
d
− 2

p2

+
γ21
4ε

‖g‖2Lp3 (Σr)
|An|1−

2(d−1)
dp3 + 2ε

(
4n+3

r2

∫
An

v2n dx+ 2

∫
An

η2|Dvn|2 dx
)
. (2.3)

Let δ = min
(
2
d − 2

p1
, 4d − 2

p2
, 2d − 2(d−1)

dp3

)
> 0. Then we get from (2.1), (2.2), and (2.3) that∫

An

η2|Dvn|2 dx ≤ C(λ,Λ)
4n

r2

∫
An

v2n dx+ C(λ)|An|1+δ− 2
d |Br|

2
d
− 2

p1
−δ‖F ‖2Lp1 (Ωr)

+

+ C(λ, γ0, γ1)|An|1+δ− 2
d

(
|Br|

4
d
− 2

p2
−δ‖f‖2Lp2 (Ωr)

+ |Br|
2
d
− 2(d−1)

dp3
−δ‖g‖2Lp3 (Σr)

)
.

Therefore, if we set

M := |Br|−
1
p1 ‖F ‖Lp1 (Ωr) + |Br|

1
d
− 1

p2 ‖f‖Lp2 (Ωr) + |Br|−
d−1
dp3 ‖g‖Lp3 (Σr),

then we have∫
An

η2|Dvn|2 dx ≤ C(λ,Λ)
4n

r2

∫
An

v2n dx+ C(λ, γ0, γ1)|An|1+δ− 2
d |Br| 2d−δM2. (2.4)



194 S. KIM

Now, denote

Yn :=

∫
An

η2nv
2
n dx,

and observe that

Yn ≥
∫
An+1

v2n dx ≥ k2

4n
|An+1|. (2.5)

Then it follows from (1.1) and Hölder’s inequality that (use r ≤ 1)

Yn+1 ≤ γ′0‖ηn+1vn+1‖2W 1,2d/(d+2)(Ω)
≤ γ′0|An+1| 2d ‖ηn+1vn+1‖2W 1,2(Ω)

≤ γ′0|An+1| 2d
(
4n+3

r2

∫
An+1

v2n+1 dx+ 2

∫
An+1

η2n+1|Dvn+1|2 dx
)
, (2.6)

where γ′0 = γ′0(d,Ω). This together with (2.4) implies that (use vn ≥ vn+1)

Yn+1 ≤ C0|An+1| 2d
(
4n

r2

∫
An+1

v2n dx+ |An+1|1+δ− d
2 |Br| 2d−δM2

)
,

where C0 = C0(λ,Λ, γ0, γ
′
0, γ1) = C0(d, λ,Λ,Ω, p2, p3). Therefore, by (2.5) we obtain (use

0 < 2
d − δ)

Yn+1 ≤ C0|Br| 2d−δ

(
4n

r2
|An+1|δYn + |An+1|1+δM2

)
≤ C0|Br| 2d−δ

(
4n

r2

(
4n

k2

)δ

+

(
4n

k2

)1+δ

M2

)
Y 1+δ
n

≤ C0|Br| 2d−δ 4
2n

r2
k−2δ

(
1 +

r2M2

k2

)
Y 1+δ
n .

We take

k := 41/δ
2
(2C0|B1|2)1/2δ|Br|− 1

2 ‖u‖L2(Ωr) + rM and K := 2C0r
−2|Br| 2d−δk−2δ.

Then we have (rM ≤ k)

Yn+1 ≤ 16nKY 1+δ
n

and

Y1 ≤
∫
Ωr

|u|2 dx ≤ 16−1/δ2K−1/δ.

The following lemma is taken from [6, Lemma 15.1, p. 319].

Lemma 2.7. Let {Yn} be a sequence of positive numbers linked by the recursive inequalities

Yn+1 ≤ bnKY 1+σ
n

for some b > 1, K > 0, and δ > 0. If

Y1 ≤ b−1/σ2
K−1/δ,



LOCAL BOUNDEDNESS FOR NEUMANN PROBLEM 195

then {Yn} → 0 as n → ∞.

By the lemma, we have Yn → 0 as n → ∞, and thus, we get

u ≤ 2k on Ωr/2.

By applying the same argument to −u, we obtain the estimate (1.7) from the definition of M
and k. �
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