East Asian Math. J.
Vol. 39 (2023), No. 3, pp. 305-317
YNMS
http://dx.doi.org/10.7858/eamj.2023.023

EXISTENCE OF GREEN FUNCTIONS FOR STOKES SYSTEMS WITH NEUMANN BOUNDARY CONDITIONS

Jongkeun Choi*

Abstract

We establish the existence and uniqueness of Green functions in Lipschitz domains for stationary Stokes systems with Neumann boundary conditions. For the uniqueness, we impose a different normalization condition from that in Choi et al. (J. Math. Fluid Mech., 20(4):1745-1769, 2018).

1. Introduction and main result

Let Ω be a bounded Lipschitz domain in \mathbb{R}^{d}, where $d \geq 3$, and ν the outward unit normal to $\partial \Omega$. We consider a Neumann problem for the stationary Stokes system with variable coefficients

$$
\begin{cases}\operatorname{div} u=f & \text { in } \Omega \tag{1}\\ \mathcal{L} u+\nabla p=g & \text { in } \Omega \\ \mathcal{B} u+p \nu=h & \text { on } \partial \Omega\end{cases}
$$

where \mathcal{L} is a 2 nd order elliptic operator in divergence form

$$
\mathcal{L} u=D_{\alpha}\left(A^{\alpha \beta} D_{\beta} u\right)
$$

acting on column vector-valued functions $u=\left(u_{1}, \ldots, u_{d}\right)^{\top}$ and $\mathcal{B} u$ is the conormal derivative of u. The Neumann problem (1) arises from the variational principle and occurs when modeling a channel flow in which the output velocity dependence is a prior unknown. See $[2,10]$ and references therein.

In this paper, we are concerned with the Green functions of the Neumann problem. By the Green function, we mean a pair $(G, \Pi)=(G(x, y), \Pi(x, y))$

[^0]satisfying
\[

$$
\begin{cases}\operatorname{div} G(\cdot, y)=0 & \text { in } \Omega \\ \mathcal{L} G(\cdot, y)+\nabla \Pi(\cdot, y)=-\delta_{y} I & \text { in } \Omega \\ \mathcal{B} G(\cdot, y)+\nu \Pi(\cdot, y)=-\frac{1}{|\partial \Omega|} I & \text { on } \partial \Omega\end{cases}
$$
\]

where δ_{y} is the Dirac delta function concentrated at y and I is the $d \times d$ identity matrix. See Definition 1.1 for a precise definition of the Green function. We prove that the Green function exists and satisfies the pointwise bound

$$
|G(x, y)| \leq C|x-y|^{2-d}
$$

away from the boundary of the domain under an interior continuity assumption of weak solutions to the system. In particular, for the uniqueness of Green functions, we impose the normalization condition

$$
\begin{equation*}
\int_{\partial \Omega} G(x, y) d x=0 \tag{2}
\end{equation*}
$$

Notice that if Ω is irregular so that neither the outer normal nor the trace of a Sobolev function on the boundary are defined, one may use the normalization condition

$$
\begin{equation*}
\int_{\Omega} G(x, y) d x=0 \tag{3}
\end{equation*}
$$

instead of (2), which enables to construct the Green functions in domains that are more general than Lipschitz. We refer the reader to [4] for the Green function with the condition (3). It is worth noting that in establishing the representation formula of the solution u to (1), the condition (2) requires the data g and h to satisfy only a compatibility condition (see Remark 1.5), whereas the condition (3) requires those to be of the form

$$
g=\tilde{g}+D_{\alpha} \tilde{h}_{\alpha}, \quad h=\tilde{h}_{\alpha} \nu_{\alpha}
$$

so that no boundary term appears in the weak formulation (see [4, Remark $2.3]$). If Ω is unbounded, such normalization conditions are not needed. We refer the reader to [11] for Green functions in three dimensional half-spaces for the classical Stokes system with the Laplace operator. See also [6] for Green functions in bounded Lipschitz domains for elliptic systems with the normalization condition (2) and [5] for those in both bounded and unbounded domains for elliptic and parabolic systems with the normalization condition (3) on bounded domains.

The remainder of the paper is organized as follows. In the rest of this section, we state our main result along with some definitions and assumptions. In Section 2, we provide the proof of the main theorem.

Throughout this paper, we denote by Ω a bounded Lipschitz domain in the Euclidean space \mathbb{R}^{d}, where $d \geq 3$. Given $x \in \Omega$ and $r>0$, we write

$$
\Omega_{r}(x)=\Omega \cap B_{r}(x),
$$

where $B_{r}(x)$ is the usual Euclidean ball or radius r centered at x. We also denote $d_{x}=\operatorname{dist}(x, \partial \Omega)$. For $q \in[1, \infty]$, we define

$$
\tilde{L}_{q}(\Omega)=\left\{u \in L_{q}(\Omega): \int_{\partial \Omega} u d \sigma=0\right\}
$$

and

$$
\tilde{W}_{q}^{1}(\Omega)=\left\{u \in W_{q}^{1}(\Omega): \int_{\partial \Omega} u d \sigma=0\right\}
$$

where $W_{q}^{1}(\Omega)$ is the usual Sobolev space. For a function u on Ω, we use $(u)_{\Omega}$ to denote the average of u in Ω, that is

$$
(u)_{\Omega}=\frac{1}{|\Omega|} \int_{\Omega} u d x=f_{\Omega} u d x
$$

where $|\Omega|$ is the d-dimensional Legesgue measure of Ω.
Let \mathcal{L} be an elliptic operator in divergence form

$$
\mathcal{L} u=D_{\alpha}\left(A^{\alpha \beta} D_{\beta} u\right),
$$

where the coefficients $A^{\alpha \beta}=A^{\alpha \beta}(x)$ are $d \times d$ matrix-valued functions on \mathbb{R}^{d} satisfying the strong ellipticity condition, that is, there is a constant $\lambda \in(0,1]$ such that for any $x \in \mathbb{R}^{d}$ and $\xi^{\alpha} \in \mathbb{R}^{d}, \alpha \in\{1, \ldots, d\}$, we have

$$
\left|A^{\alpha \beta}(x)\right| \leq \lambda^{-1}, \quad \sum_{\alpha, \beta=1}^{d} A^{\alpha \beta}(x) \xi^{\beta} \cdot \xi^{\alpha} \geq \lambda \sum_{\alpha=1}^{d}\left|\xi^{\alpha}\right|^{2}
$$

We denote by $\mathcal{B} u=A^{\alpha \beta} D_{\beta} u \nu_{\alpha}$ the conormal derivative of u on $\partial \Omega$ associated with \mathcal{L}. The adjoint operator \mathcal{L}^{*} and the conormal derivative operator \mathcal{B}^{*} associated with \mathcal{L}^{*} are defined by

$$
\mathcal{L}^{*} u=D_{\alpha}\left(\left(A^{\beta \alpha}\right)^{\top} D_{\beta} u\right), \quad \mathcal{B}^{*} u=\left(A^{\beta \alpha}\right)^{\top} D_{\beta} u \nu_{\alpha} .
$$

Let $g \in L_{2 d /(d+2)}(\Omega)^{d}$ and $h \in L_{2}(\partial \Omega)^{d}$ satisfy the compatibility condition

$$
\int_{\Omega} g d x=\int_{\partial \Omega} h d \sigma
$$

We say that $(u, p) \in W_{2}^{1}(\Omega)^{d} \times L_{2}(\Omega)$ is a weak solution of

$$
\begin{cases}\mathcal{L} u+\nabla p=g & \text { in } \Omega \\ \mathcal{B} u+p \nu=h & \text { on } \partial \Omega\end{cases}
$$

if

$$
\int_{\Omega} A^{\alpha \beta} D_{\beta} u \cdot D_{\alpha} \phi d x+\int_{\Omega} p \operatorname{div} \phi d x=-\int_{\Omega} g \cdot \phi d x+\int_{\partial \Omega} h \cdot \phi d \sigma
$$

holds for any $\phi \in W_{2}^{1}(\Omega)^{d}$. A weak solution of the adjoint problem

$$
\begin{cases}\mathcal{L}^{*} u+\nabla p=g & \text { in } \Omega \\ \mathcal{B}^{*} u+p \nu=h & \text { on } \partial \Omega\end{cases}
$$

is defined similarly. For $u \in W_{1}^{1}(\Omega)^{d}$ and $f \in L_{1}(\Omega)$, by $\operatorname{div} u=f$ in Ω, we mean the equation holds in the almost everywhere sense.

In the definition below, $G=G(x, y)$ is a $d \times d$ matrix-valued function with the entries $G_{i j}: \Omega \times \Omega \rightarrow[-\infty, \infty]$, and $\Pi=\Pi(x, y)$ is a $1 \times d$ vector-valued function with the entries $\Pi_{i}: \Omega \times \Omega \rightarrow[-\infty, \infty]$.
Definition 1.1 (Green function). We say that (G, Π) is a Green function for \mathcal{L} in a bounded Lipschitz domain Ω if it satisfies the following properties:
(a) For any $y \in \Omega$ and $r>0$,

$$
\begin{gathered}
G(\cdot, y) \in \tilde{W}_{1}^{1}(\Omega)^{d \times d} \cap W_{2}^{1}\left(\Omega \backslash B_{r}(y)\right)^{d \times d} \\
\Pi(\cdot, y) \in L_{1}(\Omega)^{d} \cap L_{2}\left(\Omega \backslash B_{r}(y)\right)^{d} .
\end{gathered}
$$

(b) For any $y \in \Omega,(G(\cdot, y), \Pi(\cdot, y))$ satisfies

$$
\begin{cases}\operatorname{div} G(\cdot, y)=0 & \text { in } \Omega \\ \mathcal{L} G(\cdot, y)+\nabla \Pi(\cdot, y)=-\delta_{y} I & \text { in } \Omega \\ \mathcal{B} G(\cdot, y)+\nu \Pi(\cdot, y)=-\frac{1}{|\partial \Omega|} I & \text { on } \partial \Omega\end{cases}
$$

in the sense that, for $k \in\{1, \ldots, d\}$ and $\phi \in W_{\infty}^{1}(\Omega)^{d} \cap C(\Omega)^{d}$, we have

$$
\operatorname{div} G_{\cdot k}(\cdot, y)=0 \quad \text { in } \Omega
$$

and

$$
\int_{\Omega} A^{\alpha \beta} D_{\beta} G_{\cdot k}(\cdot, y) \cdot D_{\alpha} \phi d x+\int_{\Omega} \Pi_{k}(\cdot, y) \operatorname{div} \phi d x=\phi_{k}(y)-f_{\partial \Omega} \phi_{k} d x
$$

where $G \cdot k(\cdot, y)$ is the k th column of $G(\cdot, y)$.
(c) If $(u, p) \in \tilde{W}_{2}^{1}(\Omega)^{d} \times L_{2}(\Omega)$ is a weak solution of the adjoint problem

$$
\begin{cases}\operatorname{div} u=f & \text { in } \Omega \\ \mathcal{L}^{*} u+\nabla p=g & \text { in } \Omega \\ \mathcal{B}^{*} u+p \nu=\frac{1}{|\partial \Omega|} \int_{\Omega} g d x & \text { on } \partial \Omega\end{cases}
$$

where $f \in L_{\infty}(\Omega)$ and $g \in L_{\infty}(\Omega)^{d}$, then for a.e. $y \in \Omega$, we have

$$
u(y)=-\int_{\Omega} G(x, y)^{\top} g(x) d x+\int_{\Omega} \Pi(x, y)^{\top} f(x) d x
$$

where $G(x, y)^{\top}$ and $\Pi(x, y)^{\top}$ are the transposes of $G(x, y)$ and $\Pi(x, y)$.
Remark 1.2. By the solvability result in Lemma 2.2, we get the uniqueness of a Green function in the sense that if $(\tilde{G}, \tilde{\Pi})$ is another Green function satisfying the properties in Definition 1.1, then for any $\phi \in C_{0}^{\infty}(\Omega)$ and $\varphi \in C_{0}^{\infty}(\Omega)^{d}$, we have

$$
\int_{\Omega}\left(G(x, y)^{\top}-\tilde{G}(x, y)^{\top}\right) \varphi(x) d x=\int_{\Omega}\left(\Pi(x, y)^{\top}-\tilde{\Pi}(x, y)^{\top}\right) \phi(x) d x=0
$$

for a.e. $y \in \Omega$.

To construct the Green function, we impose the following assumption. Note that the assumption holds when the coefficients $A^{\alpha \beta}$ are variably partially BMO; see [4, Theorem 6.2].
Assumption 1.3. There exist constants $R_{0} \in(0,1]$ and $A_{0}>0$ such that the following holds: Let $x_{0} \in \Omega$ and $0<R<\min \left\{R_{0}, d_{x_{0}}\right\}$. If $(u, p) \in$ $W_{2}^{1}\left(B_{R}\left(x_{0}\right)\right)^{d} \times L_{2}\left(B_{R}\left(x_{0}\right)\right)$ satisfies

$$
\begin{cases}\operatorname{div} u=0 & \text { in } B_{R}\left(x_{0}\right) \\ \mathcal{L} u+\nabla p=g & \text { in } B_{R}\left(x_{0}\right)\end{cases}
$$

where $g \in L_{\infty}\left(\bar{B}_{R}\left(x_{0}\right)\right)^{d}$, then we have $u \in C\left(\overline{B_{R / 2}\left(x_{0}\right)}\right)^{d}$ (in fact, a version of u belongs to $C\left(\overline{B_{R / 2}\left(x_{0}\right)}\right)^{d}$) with the estimate

$$
\|u\|_{L_{\infty}\left(B_{R / 2}\left(x_{0}\right)\right)} \leq A_{0}\left(R^{-d / 2}\|u\|_{L_{2}\left(B_{R}\left(x_{0}\right)\right)}+R^{2}\|g\|_{L_{\infty}\left(B_{R}\left(x_{0}\right)\right)}\right) .
$$

The same statement holds true when \mathcal{L} is replaced by \mathcal{L}^{*}.
Theorem 1.4. Let Ω be a bounded Lipschitz domain in \mathbb{R}^{d}, where $d \geq 3$. Then under Assumption 1.3, there exist Green functions (G, Π) and $\left(G^{*}, \Pi^{*}\right)$ for \mathcal{L} and \mathcal{L}^{*}, respectively, such that for given $y \in \Omega$, we have

$$
G(\cdot, y), G^{*}(\cdot, y) \in C(\Omega \backslash\{y\})^{d \times d}
$$

and there exists a measure zero set $N_{y} \subset \Omega$ such that

$$
\begin{equation*}
G(x, y)=G^{*}(y, x)^{\top}, \quad G(y, x)=G^{*}(x, y)^{\top} \quad \text { for all } x \in \Omega \backslash N_{y} \tag{4}
\end{equation*}
$$

Moreover, for any $x, y \in \Omega$ satisfying

$$
0<|x-y|<\frac{1}{2} \min \left\{R_{0}, d_{y}\right\}
$$

we have

$$
\begin{equation*}
|G(x, y)| \leq C|x-y|^{2-d} . \tag{5}
\end{equation*}
$$

Furthermore, the following estimates hold for all $y \in \Omega$ and $0<R<\min \left\{R_{0}, d_{y}\right\}$:
(i) $\|G(\cdot, y)\|_{L_{2 d /(d-2)}\left(\Omega \backslash B_{R}(y)\right)}+\|D G(\cdot, y)\|_{L_{2}\left(\Omega \backslash B_{R}(y)\right)} \leq C R^{(2-d) / 2}$.
(ii) $\|\Pi(\cdot, y)\|_{L_{2}\left(\Omega \backslash B_{R}(y)\right)} \leq C R^{(2-d) / 2}$.
(iii) $|\{x \in \Omega:|G(x, y)|>t\}| \leq C t^{-d /(d-2)}$ for all $t>\min \left\{R_{0}, d_{y}\right\}^{2-d}$.
(iv) $\left|\left\{x \in \Omega:\left|D_{x} G(x, y)\right|>t\right\}\right| \leq C t^{-d /(d-1)}$ for all $t>\min \left\{R_{0}, d_{y}\right\}^{1-d}$.
(v) $|\{x \in \Omega:|\Pi(x, y)|>t\}| \leq C t^{-d /(d-1)}$ for all $t>\min \left\{R_{0}, d_{y}\right\}^{1-d}$.
(vi) $\|G(\cdot, y)\|_{L_{q}\left(B_{R}(y)\right)} \leq C_{q} R^{2-d+d / q}$, where $q \in[1, d /(d-2))$.
(vii) $\|D G(\cdot, y)\|_{L_{q}\left(B_{R}(y)\right)} \leq C_{q} R^{1-d+d / q}$, where $q \in[1, d /(d-1))$.
(viii) $\|\Pi(\cdot, y)\|_{L_{q}\left(B_{R}(y)\right)} \leq C_{q} R^{1-d+d / q}$, where $q \in[1, d /(d-1))$.

In the above, the constant C depends only on d, λ, K, and A_{0}, and C_{q} depends also on q, where the constant K is such that

$$
\begin{equation*}
\|\phi\|_{L_{2 d /(d-2)}(\Omega)}+\|\phi\|_{L_{2}(\partial \Omega)} \leq K\|D \phi\|_{L_{2}(\Omega)} \quad \text { for all } \phi \in \tilde{W}_{2}^{1}(\Omega)^{d} . \tag{6}
\end{equation*}
$$

We finish this section with the following remark on the representation formula.

Remark 1.5. Let (G, Π) and $\left(G^{*}, \Pi^{*}\right)$ be the Green functions for \mathcal{L} and \mathcal{L}^{*}, respectively, derived in Theorem 1.4. If $(u, p) \in \tilde{W}_{2}^{1}(\Omega)^{d} \times L_{2}(\Omega)$ is a weak solution of

$$
\begin{cases}\operatorname{div} u=f & \text { in } \Omega \\ \mathcal{L} u+\nabla p=g & \text { in } \Omega \\ \mathcal{B} u+p \nu=h & \text { on } \partial \Omega\end{cases}
$$

where $f \in L_{\infty}(\Omega), g \in L_{\infty}(\Omega)^{d}$, and $h \in L_{\infty}(\partial \Omega)^{d}$ satisfying

$$
\int_{\Omega} g d x=\int_{\partial \Omega} h d \sigma
$$

then for a.e. $y \in \Omega$, we have

$$
u(y)=-\int_{\Omega} G^{*}(x, y)^{\top} g(x) d x+\int_{\partial \Omega} G^{*}(x, y)^{\top} h(x) d \sigma_{x}+\int_{\Omega} \Pi^{*}(x, y)^{\top} f(x) d x
$$

Hence by (4) we see that

$$
u(y)=-\int_{\Omega} G(y, x) g(x) d x+\int_{\partial \Omega} G(y, x) h(x) d \sigma_{x}+\int_{\Omega} \Pi^{*}(x, y)^{\top} f(x) d x
$$

2. Proof of the main theorem

Throughout this paper, we mean by K the constant from (6). We also use the following notation.
Notation 2.1. For nonnegative (variable) quantities A and B, we denote $A \lesssim B$ if there exists a generic positive constant C such that $A \leq C B$. We add subscript letters like $A \lesssim a, b B$ to indicate the dependence of the implicit constant C on the parameters a and b.
Notation 2.2. For a given function f, if there is a continuous version of f, that is, there is a continuous function \tilde{f} such that $\tilde{f}=f$ in the almost everywhere sense, then we replace f with \tilde{f} and denote the version again by f.

2.1. W_{2}^{1}-solvability

In this subsection, we prove the solvability of the Stokes system in $\tilde{W}_{2}^{1}(\Omega)^{d} \times$ $L_{2}(\Omega)$. To this end, we shall use the following lemma, in which we show that the divergence equation is solvable in $\tilde{W}_{2}^{1}(\Omega)^{d}$.
Lemma 2.1. Let Ω be a bounded Lipschitz domain in \mathbb{R}^{d} and $f \in L_{2}(\Omega)$. Then there exists $u \in \tilde{W}_{2}^{1}(\Omega)^{d}$ such that

$$
\operatorname{div} u=f \text { in } \Omega, \quad\|D u\|_{L_{2}(\Omega)} \lesssim_{d}\|f\|_{L_{2}(\Omega)} .
$$

Proof. By [3, Lemma 3.1], there exists $v \in W_{2}^{1}(\Omega)^{d}$ such that

$$
\int_{\Omega} v d x=0, \quad \operatorname{div} v=f \text { in } \Omega
$$

and

$$
\|D v\|_{L_{2}(\Omega)} \lesssim_{d}\|f\|_{L_{2}(\Omega)}
$$

Then the lemma follows by setting $u=v-f_{\partial \Omega} v d \sigma$.
In the lemma below, we do not impose any regularity assumptions on the coefficients $A^{\alpha \beta}$ of the operator \mathcal{L}.

Lemma 2.2. Let Ω be a bounded Lipschitz domain in \mathbb{R}^{d}, where $d \geq 3$. Then for any $f \in L_{2}(\Omega), g \in L_{2 d /(d+2)}(\Omega)^{d}$, and $h \in L_{2}(\partial \Omega)^{d}$ satisfying

$$
\int_{\Omega} g d x=\int_{\partial \Omega} h d \sigma
$$

there exists a unique $(u, p) \in \tilde{W}_{2}^{1}(\Omega)^{d} \times L_{2}(\Omega)$ satisfying

$$
\begin{cases}\operatorname{div} u=f & \text { in } \Omega \\ \mathcal{L} u+\nabla p=g & \text { in } \Omega \\ \mathcal{B} u+p \nu=h & \text { on } \partial \Omega\end{cases}
$$

Moreover, we have

$$
\begin{equation*}
\|D u\|_{L_{2}(\Omega)}+\|p\|_{L_{2}(\Omega)} \lesssim_{d, \lambda, K}\|f\|_{L_{2}(\Omega)}+\|g\|_{L_{2 d /(d+2)}(\Omega)}+\|h\|_{L_{2}(\partial \Omega)} . \tag{7}
\end{equation*}
$$

Proof. Due to Lemma 2.1, $\tilde{W}_{2}^{1}(\Omega)^{d}$ can be understood as a Hilbert space with inner product

$$
\langle v, w\rangle=\int_{\Omega} D v \cdot D w d x
$$

Using this fact and following the proof of [7, Lemma 3.2], we see that the lemma holds.

2.2. Approximated Green functions

In this subsection, we assume that the hypotheses in Theorem 1.4 hold. Under the hypotheses, we shall construct an approximated Green function and derive its various estimates. For this, we adapt the arguments in $[9,4]$.

Let $y \in \Omega, \varepsilon \in(0,1]$, and $k \in\{1, \ldots, d\}$. Set

$$
\Phi^{\varepsilon, y}=-\frac{1}{\left|\Omega_{\varepsilon}(y)\right|} \chi_{\Omega_{\varepsilon}(y)},
$$

where $\chi_{\Omega_{\varepsilon}(y)}$ is the characteristic function. By Lemma 2.2, there exists a unique $(v, \pi)=\left(v^{\varepsilon, y, k}, \pi^{\varepsilon, y, k}\right) \in \tilde{W}_{2}^{1}(\Omega)^{d} \times L_{2}(\Omega)$ satisfying

$$
\begin{cases}\operatorname{div} v=0 & \text { in } \Omega \tag{8}\\ \mathcal{L} v+\nabla \pi=\Phi^{\varepsilon, y} e_{k} & \text { in } \Omega \\ \mathcal{B} v+p \nu=-|\partial \Omega|^{-1} e_{k} & \text { on } \partial \Omega\end{cases}
$$

where e_{k} is the k th unit vector in \mathbb{R}^{d}. We define a pair

$$
\left(G^{\varepsilon}(\cdot, y), \Pi^{\varepsilon}(\cdot, y)\right) \in \tilde{W}_{2}^{1}(\Omega)^{d \times d} \times L_{2}(\Omega)^{d}
$$

by

$$
G_{j k}^{\varepsilon}(\cdot, y)=v^{j}=v_{j}^{\varepsilon, y, k} \quad \text { and } \quad \Pi_{k}^{\varepsilon}(\cdot, y)=\pi=\pi^{\varepsilon, y, k},
$$

and call it the approximated Green function for \mathcal{L} in Ω with a pole at y. Notice from Assumption 1.3 (combined with Notation 2.2) that $G^{\varepsilon}(\cdot, y)$ is continuous in Ω.

The following lemma is about a L_{2}-estimate for the approximated Green functions. Note that the lemma is independent of $|\partial \Omega|$. Thus it does not follow directly from the L_{2}-estimate (7) applied to (8).

Lemma 2.3. Let $y \in \Omega$ and $\varepsilon \in(0,1]$. Then we have

$$
\left\|D G^{\varepsilon}(\cdot, y)\right\|_{L_{2}(\Omega)}+\left\|\Pi^{\varepsilon}(\cdot, y)\right\|_{L_{2}(\Omega)} \lesssim d, \lambda, K\left|\Omega_{\varepsilon}(y)\right|^{(2-d) /(2 d)} .
$$

Proof. For $k \in\{1, \ldots, d\}$, we denote

$$
\begin{equation*}
(v, \pi)=\left(G_{\cdot k}^{\varepsilon}(\cdot, y), \Pi_{k}^{\varepsilon}(\cdot, y)\right) \tag{9}
\end{equation*}
$$

where $G_{\cdot k}^{\varepsilon}(\cdot, y)$ is the k th column of $G^{\varepsilon}(\cdot, y)$. Notice that

$$
\int_{\Omega} A^{\alpha \beta} D_{\beta} v \cdot D_{\alpha} \phi d x+\int_{\Omega} \pi \operatorname{div} \phi d x=f_{\Omega_{\varepsilon}(y)} \phi_{k} d x-f_{\partial \Omega} \phi_{k} d \sigma
$$

for all $\phi \in W_{2}^{1}(\Omega)^{d}$. In particular, by the definition of $\tilde{W}_{2}^{1}(\Omega)$, it holds that

$$
\begin{equation*}
\int_{\Omega} A^{\alpha \beta} D_{\beta} v \cdot D_{\alpha} \phi d x+\int_{\Omega} \pi \operatorname{div} \phi d x=f_{\Omega_{\varepsilon}(y)} \phi_{k} d x \tag{10}
\end{equation*}
$$

for all $\phi \in \tilde{W}_{2}^{1}(\Omega)^{d}$. By taking $\phi=v$ in (10), and then using Hölder's inequality and (6), we have

$$
\begin{aligned}
&\|D v\|_{L_{2}(\Omega)}^{2} \lesssim\left|\Omega_{\varepsilon}(y)\right|^{(2-d) /(2 d)}\|v\|_{L_{2 d /(d-2)}(\Omega)} \\
& \lesssim d, \lambda, K \\
&\left|\Omega_{\varepsilon}(y)\right|^{(2-d) /(2 d)}\|D v\|_{L_{2}(\Omega)},
\end{aligned}
$$

and thus, we get

$$
\begin{equation*}
\|D v\|_{L_{2}(\Omega)} \lesssim\left|\Omega_{\varepsilon}(y)\right|^{(2-d) /(2 d)} \tag{11}
\end{equation*}
$$

Similarly, by taking $\phi=u$ in (10), where $u \in \tilde{W}_{2}^{1}(\Omega)^{d}$ is such that (see Lemma 2.1)

$$
\operatorname{div} u=\pi \text { in } \Omega, \quad\|D u\|_{L_{2}(\Omega)} \lesssim_{d}\|\pi\|_{L_{2}(\Omega)}
$$

we have

$$
\|\pi\|_{L_{2}(\Omega)}^{2} \lesssim\left(\|D v\|_{L_{2}(\Omega)}+\left|\Omega_{\varepsilon}(y)\right|^{(2-d) /(2 d)}\right)\|\pi\|_{L_{2}(\Omega)}
$$

from which together with (11), we get

$$
\|\pi\|_{L_{2}(\Omega)} \lesssim\left|\Omega_{\varepsilon}(y)\right|^{(2-d) /(2 d)}
$$

The lemma is proved.
In the next lemma, we obtain a pointwise bound for $G^{\varepsilon}(\cdot, y)$.
Lemma 2.4. Let $x, y \in \Omega$ and $\varepsilon \in(0,1]$ satisfying

$$
0<2 \varepsilon<\frac{|x-y|}{2}<\min \left\{R_{0}, d_{y} / 3\right\}
$$

Then we have

$$
\left|G^{\varepsilon}(x, y)\right|{\lesssim d, \lambda, K, A_{0}}|x-y|^{2-d}
$$

Proof. Recall the notation (9). We first claim that

$$
\begin{equation*}
\|v\|_{L_{1}\left(\Omega_{R}(x)\right)} \lesssim_{d, \lambda, K, A_{0}} R^{2} \tag{12}
\end{equation*}
$$

for any R with $2 \varepsilon<R<\min \left\{R_{0}, d_{y}\right\}$. Set $g=\chi_{\Omega_{R}(x)}\left(\operatorname{sgn} v^{1}, \ldots, \operatorname{sgn} v^{d}\right)^{\top}$. By Lemma 2.2, there exists a unique $(u, p) \in \tilde{W}_{2}^{1}(\Omega)^{d} \times L_{2}(\Omega)$ satisfying that

$$
\begin{cases}\operatorname{div} u=0 & \text { in } \Omega \\ \mathcal{L}^{*} u+\nabla p=-g+(g)_{\Omega} & \text { in } \Omega \\ \mathcal{B} v+p \nu=0 & \text { on } \partial \Omega\end{cases}
$$

and that

$$
\|D u\|_{L_{2}(\Omega)} \leq C\left\|g-(g)_{\Omega}\right\|_{L_{2 d /(d+2)}(\Omega)} \leq C R^{1+d / 2}
$$

where $C=C(d, \lambda, K)$, but independent of $|\Omega|$. Hence, from Assumption 1.3, Hölder's inequality, and (6), it follows that

$$
\begin{align*}
\|u\|_{L_{\infty}\left(B_{R / 2}(y)\right)} & \lesssim R^{1-d / 2}\|u\|_{L_{2 d /(d-2)}\left(B_{R}(y)\right)}+R^{2} \\
& \lesssim R^{1-d / 2}\|D u\|_{L_{2}(\Omega)}+R^{2} \\
& \lesssim R^{2} . \tag{13}
\end{align*}
$$

Since we have

$$
\int_{\Omega} g \cdot v d z=\int_{\Omega} A^{\alpha \beta} D_{\beta} v \cdot D_{\alpha} u d x=f_{B_{\varepsilon}(y)} u_{k} d z
$$

by (13) and the fact that $\varepsilon<R / 2$, we obtain

$$
\|v\|_{L_{1}\left(\Omega_{R}(x)\right)} \lesssim\|u\|_{L_{\infty}\left(B_{R / 2}(y)\right)} \lesssim R^{2} .
$$

Thus we get the claim (12).
Now, let

$$
0<2 \varepsilon<R:=\frac{|x-y|}{2}<\min \left\{R_{0}, d_{y} / 3\right\}
$$

Note that $B_{R}(x) \subset \Omega$ and $B_{R}(x) \cap B_{\varepsilon}(y)=\emptyset$, which along with (8) shows

$$
\begin{cases}\operatorname{div} v=0 & \text { in } B_{R}(x) \\ \mathcal{L} v+\nabla \pi=0 & \text { in } B_{R}(x)\end{cases}
$$

Then by Assumption 1.3 and a well known argument (see [8, pp. 80-82]), we have

$$
\|v\|_{L_{\infty}\left(B_{R / 2}(x)\right)} \lesssim R^{-d}\|v\|_{L_{1}\left(B_{R}(x)\right)}
$$

This together with (12) and the continuity of v yields the desired inequality.
Lemma 2.5. Let $y \in \Omega, 0<R<\min \left\{R_{0}, 4 d_{y} / 5\right\}$, and $0<\varepsilon<R / 4$. Set

$$
\tilde{\Pi}^{\varepsilon}(\cdot, y)=\Pi^{\varepsilon}(\cdot, y)-\left(\Pi^{\varepsilon}(\cdot, y)\right)_{\left.B_{R}(y) \backslash B_{R / 2}(y)\right)} .
$$

Then for $k \in\{1, \ldots, d\}$, we have

$$
\left\|\tilde{\Pi}_{k}^{\varepsilon}(\cdot, y)\right\|_{L_{2}\left(B_{R}(y) \backslash B_{R / 2}(y)\right)} \lesssim d, \lambda R^{-1}\left\|G_{k}^{\varepsilon}(\cdot, y)\right\|_{L_{2}\left(B_{5 R / 4}(y) \backslash B_{R / 4}(y)\right)}
$$

Proof. Recall the notation (9), and set

$$
\tilde{\pi}=\pi-(\pi)_{B_{R}(y) \backslash B_{R / 2}(y)} .
$$

Since $(\tilde{\pi})_{B_{R}(y) \backslash B_{R / 2}(y)}=0$, by the existence of solutions to the divergence equation (see, for instance, [1]), there exists a function $\phi \in \overleftarrow{W}_{2}^{1}\left(B_{R}(y) \backslash \overline{B_{R / 2}(y)}\right)^{d}$ such that

$$
\operatorname{div} \phi=\tilde{\pi} \quad \text { in } B_{R}(y) \backslash \overline{B_{R / 2}(y)}
$$

and

$$
\begin{equation*}
\|D \phi\|_{L_{2}\left(B_{R}(y) \backslash B_{R / 2}(y)\right)} \leq C\|\tilde{\pi}\|_{L_{2}\left(B_{R}(y) \backslash B_{R / 2}(y)\right)} \tag{14}
\end{equation*}
$$

where by a scaling argument, it is easily seen that the constant C in the above inequality depends only on d. We extend ϕ by zero in $\mathbb{R}^{2} \backslash\left(B_{R}(y) \backslash \overline{B_{R / 2}(y)}\right)$. By testing (8) with ϕ and using $\phi \equiv 0$ on $\partial \Omega$, we obtain that

$$
\int_{B_{R}(y) \backslash B_{R / 2}(y)}|\tilde{\pi}|^{2} d x=\int_{B_{R}(y) \backslash B_{R / 2}(y)} \pi \tilde{\pi} d x=-\int_{\Omega} A^{\alpha \beta} D_{\beta} v \cdot D_{\alpha} \phi d x
$$

from which together with (14) we get

$$
\begin{equation*}
\|\tilde{\pi}\|_{L_{2}\left(B_{R}(y) \backslash B_{R / 2}(y)\right)} \lesssim d, \lambda\|D v\|_{L_{2}\left(B_{R}(y) \backslash B_{R / 2}(y)\right)} \tag{15}
\end{equation*}
$$

Let $z \in B_{R}(y) \backslash B_{R / 2}(y)$, and observe that (using $\varepsilon<R / 4$)

$$
\begin{cases}\operatorname{div} v=0 & \text { in } B_{R / 4}(z) \\ \mathcal{L} v+\nabla \pi=0 & \text { in } B_{R / 4}(z)\end{cases}
$$

By the well known Caccioppoli-type inequality (see, for instance, [4, Lemma 3.3]) with the fact that $B_{R / 4}(z) \subset\left(B_{5 R / 4}(y) \backslash B_{R / 4}(y)\right)$, we have

$$
\|D v\|_{L_{2}\left(B_{R / 8}(z)\right)} \lesssim_{d, \lambda} R^{-1}\|v\|_{L_{2}\left(B_{5 R / 4}(y) \backslash B_{R / 4}(y)\right)}
$$

Since the above inequality holds for any $z \in B_{R}(y) \backslash B_{R / 2}(y)$, we obtain

$$
\|D v\|_{L_{2}\left(B_{R}(y) \backslash B_{R / 2}(y)\right)} \lesssim R^{-1}\|v\|_{L_{2}\left(B_{5 R / 4}(y) \backslash B_{R / 4}(y)\right)}
$$

and thus, from (15) we get the desired inequality.
Based on Lemmas $2.3-2.5$, we establish the following estimates uniformly in $\varepsilon \in(0,1)$.
Lemma 2.6. Let $y \in \Omega, 0<R<\min \left\{R_{0}, d_{y}\right\}$, and $0<\varepsilon \leq 1$. Then we have

$$
\begin{equation*}
\left\|G^{\varepsilon}(\cdot, y)\right\|_{L_{2 d /(d-2)}\left(\Omega \backslash B_{R}(y)\right)}+\left\|D G^{\varepsilon}(\cdot, y)\right\|_{L_{2}\left(\Omega \backslash B_{R}(y)\right)} \lesssim_{d, \lambda, K, A_{0}} R^{(2-d) / 2} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\Pi^{\varepsilon}(\cdot, y)\right\|_{L_{2}\left(\Omega \backslash B_{R}(y)\right)} \lesssim_{d, \lambda, K, A_{0}} R^{(2-d) / 2} \tag{17}
\end{equation*}
$$

Proof. Certainly, we may assume that $0<R<d_{y} / 3$. If $R / 16 \leq \varepsilon \leq 1$, then the lemma follows immediately from Lemma 2.3 combined with (6). Thus we only need to consider the case of $0<\varepsilon<R / 16$.

We first prove the estimate (16). Recall the notation (9), and let η be an infinitely differentiable function in \mathbb{R}^{d} satisfying

$$
\begin{equation*}
0 \leq \eta \leq 1, \quad \eta \equiv 1 \text { in } B_{R / 2}(y), \quad \operatorname{supp} \eta \subset B_{R}(y), \quad|\nabla \eta| \lesssim_{d} R^{-1} \tag{18}
\end{equation*}
$$

By applying $(1-\eta)^{2} v$ as a test function to (8), we have

$$
\|(1-\eta) D v\|_{L_{2}(\Omega)}^{2} \lesssim R^{-2}\|v\|_{L_{2}\left(B_{R}(y) \backslash B_{R / 2}(y)\right)}^{2}+I+J
$$

where

$$
I=\left|\int_{\Omega} \pi \operatorname{div}\left((1-\eta)^{2} v\right) d x\right|, \quad J=\left|f_{\partial \Omega}(1-\eta)^{2} v d \sigma\right| .
$$

Notice that (using $\operatorname{div} v=0$)

$$
I=\left|\int_{\Omega} \pi \operatorname{div}\left(\left(\eta^{2}-2 \eta\right) v\right) d x\right|=\left|\int_{B_{R}(y) \backslash B_{R / 2}(y)} \tilde{\pi} \nabla\left(\eta^{2}-2 \eta\right) \cdot v d x\right|
$$

where $\tilde{\pi}=\pi-(\pi)_{B_{R}(y) \backslash B_{R / 2}(y)}$. Then by Hölder's inequality and Lemma 2.5, we have

$$
I \lesssim R^{-2}\|v\|_{L_{2}\left(B_{5 R / 4}(y) \backslash B_{R / 4}(y)\right)}^{2}
$$

Since $(1-\eta)^{2} \equiv 1$ on $\partial \Omega$, we also obtain that

$$
J=\left|f_{\partial \Omega} v d \sigma\right|=0
$$

Combining these together, and then using Lemma 2.4 with the fact that

$$
0<2 \varepsilon<\frac{R}{8} \leq \frac{|x-y|}{2}<\frac{5 R}{8}<\min \left\{R_{0}, d_{y} / 3\right\}
$$

for all $x \in B_{5 R / 4}(y) \backslash B_{R / 4}(y)$, we have

$$
\begin{equation*}
\|(1-\eta) D v\|_{L_{2}(\Omega)} \lesssim R^{-1}\|v\|_{L_{2}\left(B_{5 R / 4}(y) \backslash B_{R / 4}(y)\right)} \lesssim R^{(2-d) / 2} \tag{19}
\end{equation*}
$$

Hence by (6),

$$
\begin{aligned}
\|(1-\eta) v\|_{L_{2 d /(d-2)}(\Omega)} & \lesssim K\|D((1-\eta) v)\|_{L_{2}(\Omega)} \\
& \lesssim\|(1-\eta) D v\|_{L_{2}(\Omega)}+R^{-1}\|v\|_{L_{2}\left(B_{R}(y) \backslash B_{R / 2}(y)\right)} \\
& \lesssim R^{(2-d) / 2} .
\end{aligned}
$$

From (19) and the inequality above, we get (16).
We next prove that the estimate (17) holds when $0<R<d_{y} / 3$ and $0<\varepsilon<$ $R / 16$. By Lemma 2.1 combined with (6), there exists $\phi \in \tilde{W}_{2}^{1}(\Omega)^{d}$ such that

$$
\operatorname{div} \phi=\pi \chi_{\Omega \backslash B_{R}(y)} \text { in } \Omega
$$

and

$$
\begin{equation*}
\|\phi\|_{L_{2 d /(d-2)}(\Omega)}+\|D \phi\|_{L_{2}(\Omega)} \lesssim_{d, K}\|\pi\|_{L_{2}\left(\Omega \backslash B_{R}(y)\right)} . \tag{20}
\end{equation*}
$$

We apply $(1-\eta) \phi$ as a test function to (8), where η is as in (18), to get

$$
\int_{\Omega} \pi \operatorname{div}((1-\eta) \phi) d x=-\int_{\Omega} A^{\alpha \beta} D_{\beta} v \cdot D_{\alpha}((1-\eta) \phi) d x-f_{\partial \Omega}(1-\eta) \phi_{k} d \sigma
$$

Since it holds that

$$
\begin{aligned}
\int_{\Omega} \pi \operatorname{div}((1-\eta) \phi) d x & =\int_{\Omega} \pi \operatorname{div} \phi d x-\int_{\Omega} \pi \operatorname{div}(\eta \phi) d x \\
& =\int_{\Omega \backslash B_{R}(y)}|\pi|^{2} d x-\int_{B_{R}(y) \backslash B_{R / 2}(y)} \tilde{\pi} \nabla \eta \cdot \phi d x
\end{aligned}
$$

where $\tilde{\pi}=\pi-(\pi)_{\left.B_{R}(y) \backslash B_{R / 2}(y)\right)}$, and that

$$
f_{\partial \Omega}(1-\eta) \phi_{k} d \sigma=f_{\partial \Omega} \phi_{k} d \sigma=0
$$

we have

$$
\begin{aligned}
\int_{\Omega \backslash B_{R}(y)}|\pi|^{2} d x= & -\int_{\Omega} A^{\alpha \beta} D_{\beta} v \cdot D_{\alpha}((1-\eta) \phi) d x \\
& +\int_{B_{R}(y) \backslash B_{R / 2}(y)} \tilde{\pi} \nabla \eta \cdot \phi d x .
\end{aligned}
$$

By Hölder's inequality,

$$
\begin{aligned}
&\|\pi\|_{L_{2}\left(\Omega \backslash B_{R}(y)\right)}^{2} \lesssim\|D v\|_{L_{2}\left(\Omega \backslash B_{R / 2}(y)\right)}\left(\|\phi\|_{L_{2 d /(d-2)}(\Omega)}+\|D \phi\|_{L_{2}(\Omega)}\right) \\
&+\|\tilde{\pi}\|_{L_{2}\left(B_{R}(y) \backslash B_{R / 2}(y)\right)}\|\phi\|_{L_{2 d /(d-2)}(\Omega)}
\end{aligned}
$$

and thus we get from (20) that

$$
\|\pi\|_{L_{2}\left(\Omega \backslash B_{R}(y)\right)} \lesssim\|D v\|_{L_{2}\left(\Omega \backslash B_{R / 2}(y)\right)}+\|\tilde{\pi}\|_{L_{2}\left(B_{R}(y) \backslash B_{R / 2}(y)\right)}
$$

This together with Lemma 2.5 and (16) yields (17). The lemma is proved.
We finish this subsection with the following lemma on uniform weak type and L_{q}-estimates, the proof of which proceeds in a standard manner. See the proofs of [4, Lemmas 4.4 and 4.5] for the details.

Lemma 2.7. Let $y \in \Omega$ and $\varepsilon \in(0,1]$. Then we have

$$
\begin{aligned}
\left|\left\{x \in \Omega:\left|G^{\varepsilon}(x, y)\right|>t\right\}\right| \leq C t^{-d /(d-2)}, & \forall t>\min \left\{R_{0}, d_{y}\right\}^{2-d}, \\
\left|\left\{x \in \Omega:\left|D_{x} G^{\varepsilon}(x, y)\right|>t\right\}\right| \leq C t^{-d /(d-1)}, & \forall t>\min \left\{R_{0}, d_{y}\right\}^{1-d}, \\
\left|\left\{x \in \Omega:\left|\Pi^{\varepsilon}(x, y)\right|>t\right\}\right| \leq C t^{-d /(d-1)}, & \forall t>\min \left\{R_{0}, d_{y}\right\}^{1-d} .
\end{aligned}
$$

Moreover, for any R with $0<R<\min \left\{R_{0}, d_{y}\right\}$, we have

$$
\begin{aligned}
\left\|G^{\varepsilon}(\cdot, y)\right\|_{L_{q}\left(B_{R}(y)\right)} & \leq C_{q} R^{2-d+d / q}, & & q \in[1, d /(d-2)) \\
\left\|D G^{\varepsilon}(\cdot, y)\right\|_{L_{q}\left(B_{R}(y)\right)} & \leq C_{q} R^{1-d+d / q}, & & q \in[1, d /(d-1)) \\
\left\|\Pi^{\varepsilon}(\cdot, y)\right\|_{L_{q}\left(B_{R}(y)\right)} & \leq C_{q} R^{1-d+d / q}, & & q \in[1, d /(d-1))
\end{aligned}
$$

In the above, $C=C\left(d, \lambda, K, A_{0}\right)$ and C_{q} depends also on q.

2.3. Proof of Theorem 1.4

The existence of the Green function (G, Π) for \mathcal{L} in Ω satisfying the estimates (i) - (viii) follows from the weak compactness theorem combined with the uniform estimates in Lemmas 2.6 and 2.7. Then due to Assumption 1.3 and the estimate (i), we obtain the pointwise bound (5). By the same reasoning, we verify the existence of the Green function $\left(G^{*}, \Pi^{*}\right)$ for the adjoint operator \mathcal{L}^{*} in Ω satisfying the natural counterparts of the properties of (G, Π). Then it is easily seen that G and G^{*} satisfy the symmetry (4). For details, we refer the reader to the proof of [4, Theorem 2.4].

References

[1] Gabriel Acosta, Ricardo G. Durán, and María A. Muschietti. Solutions of the divergence operator on John domains. Adv. Math., 206(2):373-401, 2006.
[2] Michal Beneš and Petr Kučera. Solutions to the Navier-Stokes equations with mixed boundary conditions in two-dimensional bounded domains. Math. Nachr., 289(2-3):194212, 2016.
[3] Jongkeun Choi, Hongjie Dong, and Doyoon Kim. Conormal derivative problems for stationary Stokes system in Sobolev spaces. Discrete Contin. Dyn. Syst., 38(5):2349-2374, 2018.
[4] Jongkeun Choi, Hongjie Dong, and Doyoon Kim. Green functions of conormal derivative problems for Stokes system. J. Math. Fluid Mech., 20(4):1745-1769, 2018.
[5] Jongkeun Choi and Seick Kim. Green's function for second order parabolic systems with Neumann boundary condition. J. Differential Equations, 254(7):2834-2860, 2013.
[6] Jongkeun Choi and Seick Kim. Neumann functions for second order elliptic systems with measurable coefficients. Trans. Amer. Math. Soc., 365(12):6283-6307, 2013.
[7] Jongkeun Choi and Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Commun. Pure Appl. Anal., 16(6):1989-2022, 2017.
[8] Mariano Giaquinta. Introduction to regularity theory for nonlinear elliptic systems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1993.
[9] Steve Hofmann and Seick Kim. The Green function estimates for strongly elliptic systems of second order. Manuscripta math., 124(2):139-172, 2007.
[10] Stanislav Kračmar and Jiří Neustupa. A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions. Nonlinear Anal., 47(6):41694180, 2001.
[11] Vladimir Gilelevich Maz'ya and Jürgen Rossmann. Pointwise estimates for Green's kernel of a mixed boundary value problem to the Stokes system in a polyhedral cone. Math. Nachr., 278(2005):1766-1810, 2005.

Jongkeun Choi
Department of Mathematics Education, Pusan National University, Busan 46241, Republic of Korea

Email address: jongkeun_choi@pusan.ac.kr

[^0]: Received January 18, 2023; Accepted March 8, 2023.
 2010 Mathematics Subject Classification. 35J08, 35J57, 76N10, 76D07.
 Key words and phrases. Green function, stationary Stokes system, Neumann problem.
 This work was supported by a 2-Year Research Grant of Pusan National University.

 * Corresponding Author.

