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EXISTENCE OF GREEN FUNCTIONS FOR STOKES

SYSTEMS WITH NEUMANN BOUNDARY CONDITIONS

Jongkeun Choi∗

Abstract. We establish the existence and uniqueness of Green functions

in Lipschitz domains for stationary Stokes systems with Neumann bound-

ary conditions. For the uniqueness, we impose a different normalization
condition from that in Choi et al. (J. Math. Fluid Mech., 20(4):1745–1769,

2018).

1. Introduction and main result

Let Ω be a bounded Lipschitz domain in Rd, where d ≥ 3, and ν the outward
unit normal to ∂Ω. We consider a Neumann problem for the stationary Stokes
system with variable coefficients

div u = f in Ω,

Lu+∇p = g in Ω,

Bu+ pν = h on ∂Ω,

(1)

where L is a 2nd order elliptic operator in divergence form

Lu = Dα(A
αβDβu)

acting on column vector-valued functions u = (u1, . . . , ud)
⊤ and Bu is the conor-

mal derivative of u. The Neumann problem (1) arises from the variational prin-
ciple and occurs when modeling a channel flow in which the output velocity
dependence is a prior unknown. See [2, 10] and references therein.

In this paper, we are concerned with the Green functions of the Neumann
problem. By the Green function, we mean a pair (G,Π) = (G(x, y),Π(x, y))
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satisfying 
divG(·, y) = 0 in Ω,

LG(·, y) +∇Π(·, y) = −δyI in Ω,

BG(·, y) + νΠ(·, y) = − 1

|∂Ω|
I on ∂Ω,

where δy is the Dirac delta function concentrated at y and I is the d×d identity
matrix. See Definition 1.1 for a precise definition of the Green function. We
prove that the Green function exists and satisfies the pointwise bound

|G(x, y)| ≤ C|x− y|2−d

away from the boundary of the domain under an interior continuity assumption
of weak solutions to the system. In particular, for the uniqueness of Green
functions, we impose the normalization conditionˆ

∂Ω

G(x, y) dx = 0. (2)

Notice that if Ω is irregular so that neither the outer normal nor the trace of a
Sobolev function on the boundary are defined, one may use the normalization
condition ˆ

Ω

G(x, y) dx = 0 (3)

instead of (2), which enables to construct the Green functions in domains that
are more general than Lipschitz. We refer the reader to [4] for the Green function
with the condition (3). It is worth noting that in establishing the representation
formula of the solution u to (1), the condition (2) requires the data g and h to
satisfy only a compatibility condition (see Remark 1.5), whereas the condition
(3) requires those to be of the form

g = g̃ +Dαh̃α, h = h̃ανα

so that no boundary term appears in the weak formulation (see [4, Remark
2.3]). If Ω is unbounded, such normalization conditions are not needed. We
refer the reader to [11] for Green functions in three dimensional half-spaces for
the classical Stokes system with the Laplace operator. See also [6] for Green
functions in bounded Lipschitz domains for elliptic systems with the normaliza-
tion condition (2) and [5] for those in both bounded and unbounded domains for
elliptic and parabolic systems with the normalization condition (3) on bounded
domains.

The remainder of the paper is organized as follows. In the rest of this sec-
tion, we state our main result along with some definitions and assumptions. In
Section 2, we provide the proof of the main theorem.

Throughout this paper, we denote by Ω a bounded Lipschitz domain in the
Euclidean space Rd, where d ≥ 3. Given x ∈ Ω and r > 0, we write

Ωr(x) = Ω ∩Br(x),
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where Br(x) is the usual Euclidean ball or radius r centered at x. We also
denote dx = dist(x, ∂Ω). For q ∈ [1,∞], we define

L̃q(Ω) =

{
u ∈ Lq(Ω) :

ˆ
∂Ω

u dσ = 0

}
and

W̃ 1
q (Ω) =

{
u ∈ W 1

q (Ω) :

ˆ
∂Ω

u dσ = 0

}
,

where W 1
q (Ω) is the usual Sobolev space. For a function u on Ω, we use (u)Ω

to denote the average of u in Ω, that is

(u)Ω =
1

|Ω|

ˆ
Ω

u dx =

 
Ω

u dx,

where |Ω| is the d-dimensional Legesgue measure of Ω.
Let L be an elliptic operator in divergence form

Lu = Dα(A
αβDβu),

where the coefficients Aαβ = Aαβ(x) are d × d matrix-valued functions on Rd

satisfying the strong ellipticity condition, that is, there is a constant λ ∈ (0, 1]
such that for any x ∈ Rd and ξα ∈ Rd, α ∈ {1, . . . , d}, we have

|Aαβ(x)| ≤ λ−1,

d∑
α,β=1

Aαβ(x)ξβ · ξα ≥ λ

d∑
α=1

|ξα|2.

We denote by Bu = AαβDβuνα the conormal derivative of u on ∂Ω associated
with L. The adjoint operator L∗ and the conormal derivative operator B∗

associated with L∗ are defined by

L∗u = Dα((A
βα)⊤Dβu), B∗u = (Aβα)⊤Dβuνα.

Let g ∈ L2d/(d+2)(Ω)
d and h ∈ L2(∂Ω)

d satisfy the compatibility conditionˆ
Ω

g dx =

ˆ
∂Ω

h dσ.

We say that (u, p) ∈ W 1
2 (Ω)

d × L2(Ω) is a weak solution of{
Lu+∇p = g in Ω,

Bu+ pν = h on ∂Ω

if ˆ
Ω

AαβDβu ·Dαϕdx+

ˆ
Ω

p div ϕdx = −
ˆ
Ω

g · ϕdx+

ˆ
∂Ω

h · ϕdσ

holds for any ϕ ∈ W 1
2 (Ω)

d. A weak solution of the adjoint problem{
L∗u+∇p = g in Ω,

B∗u+ pν = h on ∂Ω
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is defined similarly. For u ∈ W 1
1 (Ω)

d and f ∈ L1(Ω), by div u = f in Ω, we
mean the equation holds in the almost everywhere sense.

In the definition below, G = G(x, y) is a d × d matrix-valued function with
the entries Gij : Ω × Ω → [−∞,∞], and Π = Π(x, y) is a 1 × d vector-valued
function with the entries Πi : Ω× Ω → [−∞,∞].

Definition 1.1 (Green function). We say that (G,Π) is a Green function for
L in a bounded Lipschitz domain Ω if it satisfies the following properties:
(a) For any y ∈ Ω and r > 0,

G(·, y) ∈ W̃ 1
1 (Ω)

d×d ∩W 1
2 (Ω \Br(y))

d×d,

Π(·, y) ∈ L1(Ω)
d ∩ L2(Ω \Br(y))

d.

(b) For any y ∈ Ω, (G(·, y),Π(·, y)) satisfies
divG(·, y) = 0 in Ω,

LG(·, y) +∇Π(·, y) = −δyI in Ω,

BG(·, y) + νΠ(·, y) = − 1

|∂Ω|
I on ∂Ω,

in the sense that, for k ∈ {1, . . . , d} and ϕ ∈ W 1
∞(Ω)d ∩ C(Ω)d, we have

divG·k(·, y) = 0 in Ω

and ˆ
Ω

AαβDβG·k(·, y) ·Dαϕdx+

ˆ
Ω

Πk(·, y) div ϕdx = ϕk(y)−
 
∂Ω

ϕk dx,

where G·k(·, y) is the kth column of G(·, y).
(c) If (u, p) ∈ W̃ 1

2 (Ω)
d × L2(Ω) is a weak solution of the adjoint problem

div u = f in Ω,

L∗u+∇p = g in Ω,

B∗u+ pν =
1

|∂Ω|

ˆ
Ω

g dx on ∂Ω,

where f ∈ L∞(Ω) and g ∈ L∞(Ω)d, then for a.e. y ∈ Ω, we have

u(y) = −
ˆ
Ω

G(x, y)⊤g(x) dx+

ˆ
Ω

Π(x, y)⊤f(x) dx.

where G(x, y)⊤ and Π(x, y)⊤ are the transposes of G(x, y) and Π(x, y).

Remark 1.2. By the solvability result in Lemma 2.2, we get the uniqueness of a
Green function in the sense that if (G̃, Π̃) is another Green function satisfying
the properties in Definition 1.1, then for any ϕ ∈ C∞

0 (Ω) and φ ∈ C∞
0 (Ω)d, we

haveˆ
Ω

(
G(x, y)⊤ − G̃(x, y)⊤

)
φ(x) dx =

ˆ
Ω

(
Π(x, y)⊤ − Π̃(x, y)⊤

)
ϕ(x) dx = 0

for a.e. y ∈ Ω.



GREEN FUNCTION 309

To construct the Green function, we impose the following assumption. Note
that the assumption holds when the coefficients Aαβ are variably partially BMO;
see [4, Theorem 6.2].

Assumption 1.3. There exist constants R0 ∈ (0, 1] and A0 > 0 such that
the following holds: Let x0 ∈ Ω and 0 < R < min{R0, dx0}. If (u, p) ∈
W 1

2 (BR(x0))
d × L2(BR(x0)) satisfies{

div u = 0 in BR(x0),

Lu+∇p = g in BR(x0),

where g ∈ L∞(BR(x0))
d, then we have u ∈ C(BR/2(x0))

d (in fact, a version of

u belongs to C(BR/2(x0))
d) with the estimate

∥u∥L∞(BR/2(x0)) ≤ A0

(
R−d/2∥u∥L2(BR(x0)) +R2∥g∥L∞(BR(x0))

)
.

The same statement holds true when L is replaced by L∗.

Theorem 1.4. Let Ω be a bounded Lipschitz domain in Rd, where d ≥ 3. Then
under Assumption 1.3, there exist Green functions (G,Π) and (G∗,Π∗) for L
and L∗, respectively, such that for given y ∈ Ω, we have

G(·, y), G∗(·, y) ∈ C(Ω \ {y})d×d,

and there exists a measure zero set Ny ⊂ Ω such that

G(x, y) = G∗(y, x)⊤, G(y, x) = G∗(x, y)⊤ for all x ∈ Ω \Ny. (4)

Moreover, for any x, y ∈ Ω satisfying

0 < |x− y| < 1

2
min{R0, dy},

we have
|G(x, y)| ≤ C|x− y|2−d. (5)

Furthermore, the following estimates hold for all y ∈ Ω and 0 < R < min{R0, dy}:
(i) ∥G(·, y)∥L2d/(d−2)(Ω\BR(y)) + ∥DG(·, y)∥L2(Ω\BR(y)) ≤ CR(2−d)/2.

(ii) ∥Π(·, y)∥L2(Ω\BR(y)) ≤ CR(2−d)/2.

(iii)
∣∣{x ∈ Ω : |G(x, y)| > t}

∣∣ ≤ Ct−d/(d−2) for all t > min{R0, dy}2−d.

(iv)
∣∣{x ∈ Ω : |DxG(x, y)| > t}

∣∣ ≤ Ct−d/(d−1) for all t > min{R0, dy}1−d.

(v)
∣∣{x ∈ Ω : |Π(x, y)| > t}

∣∣ ≤ Ct−d/(d−1) for all t > min{R0, dy}1−d.

(vi) ∥G(·, y)∥Lq(BR(y)) ≤ CqR
2−d+d/q, where q ∈ [1, d/(d− 2)).

(vii) ∥DG(·, y)∥Lq(BR(y)) ≤ CqR
1−d+d/q, where q ∈ [1, d/(d− 1)).

(viii) ∥Π(·, y)∥Lq(BR(y)) ≤ CqR
1−d+d/q, where q ∈ [1, d/(d− 1)).

In the above, the constant C depends only on d, λ, K, and A0, and Cq depends
also on q, where the constant K is such that

∥ϕ∥L2d/(d−2)(Ω) + ∥ϕ∥L2(∂Ω) ≤ K∥Dϕ∥L2(Ω) for all ϕ ∈ W̃ 1
2 (Ω)

d. (6)

We finish this section with the following remark on the representation for-
mula.
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Remark 1.5. Let (G,Π) and (G∗,Π∗) be the Green functions for L and L∗,

respectively, derived in Theorem 1.4. If (u, p) ∈ W̃ 1
2 (Ω)

d × L2(Ω) is a weak
solution of 

div u = f in Ω,

Lu+∇p = g in Ω,

Bu+ pν = h on ∂Ω,

where f ∈ L∞(Ω), g ∈ L∞(Ω)d, and h ∈ L∞(∂Ω)d satisfyingˆ
Ω

g dx =

ˆ
∂Ω

h dσ,

then for a.e. y ∈ Ω, we have

u(y) = −
ˆ
Ω

G∗(x, y)⊤g(x) dx+

ˆ
∂Ω

G∗(x, y)⊤h(x) dσx +

ˆ
Ω

Π∗(x, y)⊤f(x) dx.

Hence by (4) we see that

u(y) = −
ˆ
Ω

G(y, x)g(x) dx+

ˆ
∂Ω

G(y, x)h(x) dσx +

ˆ
Ω

Π∗(x, y)⊤f(x) dx.

2. Proof of the main theorem

Throughout this paper, we mean by K the constant from (6). We also use
the following notation.

Notation 2.1. For nonnegative (variable) quantities A and B, we denote A ≲ B
if there exists a generic positive constant C such that A ≤ CB. We add subscript
letters like A ≲a,b B to indicate the dependence of the implicit constant C on
the parameters a and b.

Notation 2.2. For a given function f , if there is a continuous version of f , that
is, there is a continuous function f̃ such that f̃ = f in the almost everywhere
sense, then we replace f with f̃ and denote the version again by f .

2.1. W 1
2 -solvability

In this subsection, we prove the solvability of the Stokes system in W̃ 1
2 (Ω)

d×
L2(Ω). To this end, we shall use the following lemma, in which we show that

the divergence equation is solvable in W̃ 1
2 (Ω)

d.

Lemma 2.1. Let Ω be a bounded Lipschitz domain in Rd and f ∈ L2(Ω). Then

there exists u ∈ W̃ 1
2 (Ω)

d such that

div u = f in Ω, ∥Du∥L2(Ω) ≲d ∥f∥L2(Ω).

Proof. By [3, Lemma 3.1], there exists v ∈ W 1
2 (Ω)

d such thatˆ
Ω

v dx = 0, div v = f in Ω,

and
∥Dv∥L2(Ω) ≲d ∥f∥L2(Ω).
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Then the lemma follows by setting u = v −
ffl
∂Ω

v dσ. □

In the lemma below, we do not impose any regularity assumptions on the
coefficients Aαβ of the operator L.

Lemma 2.2. Let Ω be a bounded Lipschitz domain in Rd, where d ≥ 3. Then
for any f ∈ L2(Ω), g ∈ L2d/(d+2)(Ω)

d, and h ∈ L2(∂Ω)
d satisfyingˆ

Ω

g dx =

ˆ
∂Ω

h dσ,

there exists a unique (u, p) ∈ W̃ 1
2 (Ω)

d × L2(Ω) satisfying
div u = f in Ω,

Lu+∇p = g in Ω,

Bu+ pν = h on ∂Ω.

Moreover, we have

∥Du∥L2(Ω) + ∥p∥L2(Ω) ≲d,λ,K ∥f∥L2(Ω) + ∥g∥L2d/(d+2)(Ω) + ∥h∥L2(∂Ω). (7)

Proof. Due to Lemma 2.1, W̃ 1
2 (Ω)

d can be understood as a Hilbert space with
inner product

⟨v, w⟩ =
ˆ
Ω

Dv ·Dwdx.

Using this fact and following the proof of [7, Lemma 3.2], we see that the lemma
holds. □

2.2. Approximated Green functions

In this subsection, we assume that the hypotheses in Theorem 1.4 hold.
Under the hypotheses, we shall construct an approximated Green function and
derive its various estimates. For this, we adapt the arguments in [9, 4].

Let y ∈ Ω, ε ∈ (0, 1], and k ∈ {1, . . . , d}. Set

Φε,y = − 1

|Ωε(y)|
χΩε(y),

where χΩε(y) is the characteristic function. By Lemma 2.2, there exists a unique

(v, π) = (vε,y,k, πε,y,k) ∈ W̃ 1
2 (Ω)

d × L2(Ω) satisfying
div v = 0 in Ω,

Lv +∇π = Φε,yek in Ω,

Bv + pν = −|∂Ω|−1ek on ∂Ω,

(8)

where ek is the kth unit vector in Rd. We define a pair

(Gε(·, y),Πε(·, y)) ∈ W̃ 1
2 (Ω)

d×d × L2(Ω)
d

by

Gε
jk(·, y) = vj = vε,y,kj and Πε

k(·, y) = π = πε,y,k,
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and call it the approximated Green function for L in Ω with a pole at y. Notice
from Assumption 1.3 (combined with Notation 2.2) that Gε(·, y) is continuous
in Ω.

The following lemma is about a L2-estimate for the approximated Green
functions. Note that the lemma is independent of |∂Ω|. Thus it does not follow
directly from the L2-estimate (7) applied to (8).

Lemma 2.3. Let y ∈ Ω and ε ∈ (0, 1]. Then we have

∥DGε(·, y)∥L2(Ω) + ∥Πε(·, y)∥L2(Ω) ≲d,λ,K |Ωε(y)|(2−d)/(2d).

Proof. For k ∈ {1, . . . , d}, we denote

(v, π) = (Gε
·k(·, y),Πε

k(·, y)), (9)

where Gε
·k(·, y) is the kth column of Gε(·, y). Notice thatˆ
Ω

AαβDβv ·Dαϕdx+

ˆ
Ω

π div ϕdx =

 
Ωε(y)

ϕk dx−
 
∂Ω

ϕk dσ

for all ϕ ∈ W 1
2 (Ω)

d. In particular, by the definition of W̃ 1
2 (Ω), it holds thatˆ

Ω

AαβDβv ·Dαϕdx+

ˆ
Ω

π div ϕdx =

 
Ωε(y)

ϕk dx (10)

for all ϕ ∈ W̃ 1
2 (Ω)

d. By taking ϕ = v in (10), and then using Hölder’s inequality
and (6), we have

∥Dv∥2L2(Ω) ≲ |Ωε(y)|(2−d)/(2d)∥v∥L2d/(d−2)(Ω)

≲d,λ,K |Ωε(y)|(2−d)/(2d)∥Dv∥L2(Ω),

and thus, we get
∥Dv∥L2(Ω) ≲ |Ωε(y)|(2−d)/(2d). (11)

Similarly, by taking ϕ = u in (10), where u ∈ W̃ 1
2 (Ω)

d is such that (see Lemma
2.1)

div u = π in Ω, ∥Du∥L2(Ω) ≲d ∥π∥L2(Ω),

we have
∥π∥2L2(Ω) ≲

(
∥Dv∥L2(Ω) + |Ωε(y)|(2−d)/(2d)

)
∥π∥L2(Ω),

from which together with (11), we get

∥π∥L2(Ω) ≲ |Ωε(y)|(2−d)/(2d).

The lemma is proved. □

In the next lemma, we obtain a pointwise bound for Gε(·, y).

Lemma 2.4. Let x, y ∈ Ω and ε ∈ (0, 1] satisfying

0 < 2ε <
|x− y|

2
< min{R0, dy/3}.

Then we have
|Gε(x, y)| ≲d,λ,K,A0 |x− y|2−d.
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Proof. Recall the notation (9). We first claim that

∥v∥L1(ΩR(x)) ≲d,λ,K,A0
R2 (12)

for any R with 2ε < R < min{R0, dy}. Set g = χΩR(x)(sgn v
1, . . . , sgn vd)⊤. By

Lemma 2.2, there exists a unique (u, p) ∈ W̃ 1
2 (Ω)

d × L2(Ω) satisfying that
div u = 0 in Ω,

L∗u+∇p = −g + (g)Ω in Ω,

Bv + pν = 0 on ∂Ω,

and that

∥Du∥L2(Ω) ≤ C∥g − (g)Ω∥L2d/(d+2)(Ω) ≤ CR1+d/2,

where C = C(d, λ,K), but independent of |Ω|. Hence, from Assumption 1.3,
Hölder’s inequality, and (6), it follows that

∥u∥L∞(BR/2(y)) ≲ R1−d/2∥u∥L2d/(d−2)(BR(y)) +R2

≲ R1−d/2∥Du∥L2(Ω) +R2

≲ R2.(13)

Since we have ˆ
Ω

g · v dz =

ˆ
Ω

AαβDβv ·Dαu dx =

 
Bε(y)

uk dz,

by (13) and the fact that ε < R/2, we obtain

∥v∥L1(ΩR(x)) ≲ ∥u∥L∞(BR/2(y)) ≲ R2.

Thus we get the claim (12).
Now, let

0 < 2ε < R :=
|x− y|

2
< min{R0, dy/3}.

Note that BR(x) ⊂ Ω and BR(x) ∩Bε(y) = ∅, which along with (8) shows{
div v = 0 in BR(x),

Lv +∇π = 0 in BR(x).

Then by Assumption 1.3 and a well known argument (see [8, pp. 80–82]), we
have

∥v∥L∞(BR/2(x)) ≲ R−d∥v∥L1(BR(x)).

This together with (12) and the continuity of v yields the desired inequality. □

Lemma 2.5. Let y ∈ Ω, 0 < R < min{R0, 4dy/5}, and 0 < ε < R/4. Set

Π̃ε(·, y) = Πε(·, y)−
(
Πε(·, y)

)
BR(y)\BR/2(y))

.

Then for k ∈ {1, . . . , d}, we have

∥Π̃ε
k(·, y)∥L2(BR(y)\BR/2(y)) ≲d,λ R−1∥Gε

k(·, y)∥L2(B5R/4(y)\BR/4(y)).
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Proof. Recall the notation (9), and set

π̃ = π − (π)BR(y)\BR/2(y).

Since (π̃)BR(y)\BR/2(y) = 0, by the existence of solutions to the divergence equa-

tion (see, for instance, [1]), there exists a function ϕ ∈ W̊ 1
2 (BR(y) \ BR/2(y))

d

such that

div ϕ = π̃ in BR(y) \BR/2(y)

and

∥Dϕ∥L2(BR(y)\BR/2(y)) ≤ C∥π̃∥L2(BR(y)\BR/2(y)), (14)

where by a scaling argument, it is easily seen that the constant C in the above
inequality depends only on d. We extend ϕ by zero in R2 \

(
BR(y) \BR/2(y)

)
.

By testing (8) with ϕ and using ϕ ≡ 0 on ∂Ω, we obtain thatˆ
BR(y)\BR/2(y)

|π̃|2 dx =

ˆ
BR(y)\BR/2(y)

ππ̃ dx = −
ˆ
Ω

AαβDβv ·Dαϕdx,

from which together with (14) we get

∥π̃∥L2(BR(y)\BR/2(y)) ≲d,λ ∥Dv∥L2(BR(y)\BR/2(y)). (15)

Let z ∈ BR(y) \BR/2(y), and observe that (using ε < R/4){
div v = 0 in BR/4(z),

Lv +∇π = 0 in BR/4(z).

By the well known Caccioppoli-type inequality (see, for instance, [4, Lemma
3.3]) with the fact that BR/4(z) ⊂

(
B5R/4(y) \BR/4(y)

)
, we have

∥Dv∥L2(BR/8(z)) ≲d,λ R−1∥v∥L2(B5R/4(y)\BR/4(y)).

Since the above inequality holds for any z ∈ BR(y) \BR/2(y), we obtain

∥Dv∥L2(BR(y)\BR/2(y)) ≲ R−1∥v∥L2(B5R/4(y)\BR/4(y)),

and thus, from (15) we get the desired inequality. □

Based on Lemmas 2.3 – 2.5, we establish the following estimates uniformly
in ε ∈ (0, 1).

Lemma 2.6. Let y ∈ Ω, 0 < R < min{R0, dy}, and 0 < ε ≤ 1. Then we have

∥Gε(·, y)∥L2d/(d−2)(Ω\BR(y)) + ∥DGε(·, y)∥L2(Ω\BR(y)) ≲d,λ,K,A0 R(2−d)/2 (16)

and

∥Πε(·, y)∥L2(Ω\BR(y)) ≲d,λ,K,A0
R(2−d)/2. (17)

Proof. Certainly, we may assume that 0 < R < dy/3. If R/16 ≤ ε ≤ 1, then
the lemma follows immediately from Lemma 2.3 combined with (6). Thus we
only need to consider the case of 0 < ε < R/16.
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We first prove the estimate (16). Recall the notation (9), and let η be an
infinitely differentiable function in Rd satisfying

0 ≤ η ≤ 1, η ≡ 1 in BR/2(y), supp η ⊂ BR(y), |∇η| ≲d R−1. (18)

By applying (1− η)2v as a test function to (8), we have

∥(1− η)Dv∥2L2(Ω) ≲ R−2∥v∥2L2(BR(y)\BR/2(y))
+ I + J,

where

I =

∣∣∣∣ ˆ
Ω

π div
(
(1− η)2v

)
dx

∣∣∣∣, J =

∣∣∣∣ 
∂Ω

(1− η)2v dσ

∣∣∣∣.
Notice that (using div v = 0)

I =

∣∣∣∣ˆ
Ω

π div
(
(η2 − 2η)v

)
dx

∣∣∣∣ = ∣∣∣∣ ˆ
BR(y)\BR/2(y)

π̃∇(η2 − 2η) · v dx
∣∣∣∣,

where π̃ = π − (π)BR(y)\BR/2(y). Then by Hölder’s inequality and Lemma 2.5,
we have

I ≲ R−2∥v∥2L2(B5R/4(y)\BR/4(y))
.

Since (1− η)2 ≡ 1 on ∂Ω, we also obtain that

J =

∣∣∣∣  
∂Ω

v dσ

∣∣∣∣ = 0.

Combining these together, and then using Lemma 2.4 with the fact that

0 < 2ε <
R

8
≤ |x− y|

2
<

5R

8
< min{R0, dy/3}

for all x ∈ B5R/4(y) \BR/4(y), we have

∥(1− η)Dv∥L2(Ω) ≲ R−1∥v∥L2(B5R/4(y)\BR/4(y)) ≲ R(2−d)/2. (19)

Hence by (6),

∥(1− η)v∥L2d/(d−2)(Ω) ≲K ∥D((1− η)v)∥L2(Ω)

≲ ∥(1− η)Dv∥L2(Ω) +R−1∥v∥L2(BR(y)\BR/2(y))

≲ R(2−d)/2.

From (19) and the inequality above, we get (16).
We next prove that the estimate (17) holds when 0 < R < dy/3 and 0 < ε <

R/16. By Lemma 2.1 combined with (6), there exists ϕ ∈ W̃ 1
2 (Ω)

d such that

div ϕ = πχΩ\BR(y) in Ω

and

∥ϕ∥L2d/(d−2)(Ω) + ∥Dϕ∥L2(Ω) ≲d,K ∥π∥L2(Ω\BR(y)). (20)

We apply (1− η)ϕ as a test function to (8), where η is as in (18), to getˆ
Ω

π div((1− η)ϕ) dx = −
ˆ
Ω

AαβDβv ·Dα((1− η)ϕ) dx−
 
∂Ω

(1− η)ϕk dσ.
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Since it holds thatˆ
Ω

π div((1− η)ϕ) dx =

ˆ
Ω

π div ϕdx−
ˆ
Ω

π div(ηϕ) dx

=

ˆ
Ω\BR(y)

|π|2 dx−
ˆ
BR(y)\BR/2(y)

π̃∇η · ϕdx,

where π̃ = π − (π)BR(y)\BR/2(y)), and that

 
∂Ω

(1− η)ϕk dσ =

 
∂Ω

ϕk dσ = 0,

we have ˆ
Ω\BR(y)

|π|2 dx = −
ˆ
Ω

AαβDβv ·Dα((1− η)ϕ) dx

+

ˆ
BR(y)\BR/2(y)

π̃∇η · ϕdx.

By Hölder’s inequality,

∥π∥2L2(Ω\BR(y)) ≲ ∥Dv∥L2(Ω\BR/2(y))

(
∥ϕ∥L2d/(d−2)(Ω) + ∥Dϕ∥L2(Ω)

)
+ ∥π̃∥L2(BR(y)\BR/2(y))∥ϕ∥L2d/(d−2)(Ω),

and thus we get from (20) that

∥π∥L2(Ω\BR(y)) ≲ ∥Dv∥L2(Ω\BR/2(y)) + ∥π̃∥L2(BR(y)\BR/2(y)).

This together with Lemma 2.5 and (16) yields (17). The lemma is proved. □

We finish this subsection with the following lemma on uniform weak type
and Lq-estimates, the proof of which proceeds in a standard manner. See the
proofs of [4, Lemmas 4.4 and 4.5] for the details.

Lemma 2.7. Let y ∈ Ω and ε ∈ (0, 1]. Then we have∣∣{x ∈ Ω : |Gε(x, y)| > t}
∣∣ ≤ Ct−d/(d−2), ∀t > min{R0, dy}2−d,∣∣{x ∈ Ω : |DxG

ε(x, y)| > t}
∣∣ ≤ Ct−d/(d−1), ∀t > min{R0, dy}1−d,∣∣{x ∈ Ω : |Πε(x, y)| > t}
∣∣ ≤ Ct−d/(d−1), ∀t > min{R0, dy}1−d.

Moreover, for any R with 0 < R < min{R0, dy}, we have

∥Gε(·, y)∥Lq(BR(y)) ≤ CqR
2−d+d/q, q ∈ [1, d/(d− 2)),

∥DGε(·, y)∥Lq(BR(y)) ≤ CqR
1−d+d/q, q ∈ [1, d/(d− 1)),

∥Πε(·, y)∥Lq(BR(y)) ≤ CqR
1−d+d/q, q ∈ [1, d/(d− 1)).

In the above, C = C(d, λ,K,A0) and Cq depends also on q.
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2.3. Proof of Theorem 1.4

The existence of the Green function (G,Π) for L in Ω satisfying the estimates
(i) – (viii) follows from the weak compactness theorem combined with the
uniform estimates in Lemmas 2.6 and 2.7. Then due to Assumption 1.3 and
the estimate (i), we obtain the pointwise bound (5). By the same reasoning, we
verify the existence of the Green function (G∗,Π∗) for the adjoint operator L∗

in Ω satisfying the natural counterparts of the properties of (G,Π). Then it is
easily seen that G and G∗ satisfy the symmetry (4). For details, we refer the
reader to the proof of [4, Theorem 2.4]. □
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