• Title/Summary/Keyword: Networked control systems

Search Result 146, Processing Time 0.038 seconds

Observer-based Intelligent Control of Nonlinear Networked Control Systems with Packet Loss for Wireless Sensor Network (무선 센서 네트워크를 위한 패킷 손실을 포함한 비선형 네트워크 제어 시스템의 관측기 기반 지능 제어기 설계)

  • Ra, In-Ho;Kim, Se-Jin;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.185-190
    • /
    • 2009
  • In this paper, an observer-based intelligent controller for the nonlinear networked control systems with packet loss is proposed for wireless sensor network. For the intelligent control of the nonlinear system, it uses the fuzzy system with Takagi-Sugeno (T-S) fuzzy model. The observer is designed for the fuzzy networked control system, and the output feedback controller is proposed for the stability of estimates and errors. The stability condition of the closed-loop system with the proposed controller is represented to the linear matrix inequality (LMI) form, and the observer and control gain are obtained by LMI. An example is given to show the verification discussed throughout the paper.

Networked Tracking Controller Design (네트워크 기반 추종 제어기 설계)

  • Suh, Young-Soo;Khoa, Doleminh
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.618-620
    • /
    • 2005
  • An $H_2$ tracking controller is proposed for networked control systems. The network induced delay is assumed to be time varying and vary in the known range. The proposed controller guarantees stability and $H_2$ performance for all time varying delay in the known range. The proposed controller is verified using a simple networked motor control system.

  • PDF

H Control for Networked Control Systems with Randomly Occurring Packet Losses and Disturbances (임의적 패킷 손실과 외란입력을 고려한 네트워크 제어 시스템의 H 제어기 설계)

  • Lee, Tae H.;Park, Ju H.;Kwon, Oh-Min;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1132-1137
    • /
    • 2013
  • This paper considers the $H_{\infty}$ control problem for networked control systems(NCSs). In order to solve the problem which comes from discontinuous control signal in NCSs, an approach that discontinuous control signals treat time-varying delayed continuous signals is applied to achieve $H_{\infty}$ stability of NCSs. In addition, randomly occurring packet losses and disturbances are considered by introducing stochastic variables with Bernoulli distribution. Based on Lyapunov stability theory, a new stability condition is obtained via linear matrix inequality formulation to find the $H_{\infty}$ controller which achieves the mean square stability of NCSs. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

A Study on the Power System Control and Monitoring Technique Using CAN (CAN을 이용한 발전계통의 제어 및 모니터링 기법 연구)

  • Jung, Joon-Hong;Choi, Soo-Young;Park, Ki-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.268-276
    • /
    • 2003
  • In this paper, we present a new control and monitoring technique for a power system using CAN(Controller Area Network). Feedback control systems having co'ntrol loops closed through a network(i.e. Ethernet, ControlNet, CAN) are called NCSs(Networked Control Systems). The major problem of NCSs is the variation of stability property according to time delay including network-induced delay and computation delay in nodes. We present a new stability analysis method of NCSs with time delay exploiting a state-space model of LTI(Linear Time Invariant) interconnected systems. The proposed method can determine a proper sampling period of NCSs that preserves stability performance even in NCSs with a dynamic controller. We design CAN nodes which can transmit control and monitoring data through CAN bus and apply these to NCSs for a power system. The results of the experiment validate effectiveness of our control and monitoring technique for a power system.

Nonlinear Networked Control Systems with Random Nature using Neural Approach and Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.444-452
    • /
    • 2008
  • We propose an intelligent predictive control approach for a nonlinear networked control system (NCS) with time-varying delay and random observation. The control is given by the sum of a nominal control and a corrective control. The nominal control is determined analytically using a linearized system model with fixed time delay. The corrective control is generated online by a neural network optimizer. A Markov chain (MC) dynamic Bayesian network (DBN) predicts the dynamics of the stochastic system online to allow predictive control design. We apply our proposed method to a satellite attitude control system and evaluate its control performance through computer simulation.

Control and Development of LonWorks Intelligent Control Module for Water Treatment Facility Based Networked control System

  • Hong, Won-Pyo;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1757-1762
    • /
    • 2003
  • With distribution industrial control system, the use of low cost to achieve a highly reliable and safe system in real time distributed embedded application is proposed. This developed intelligent node is based on two microcontrollers, one for the execution of the application code, also as master controller for ensuring the real time control & the logic operation with PLD and other for communication task and the easy control execution, i.e., I/O digital input, digital output and interrupting. This paper also presents where the case NCS (Networked control system) with LonTalk protocol is applied for the filtration process control system of a small water treatment plant.

  • PDF

Intelligent Controller for Networked Control Systems with Time-delay (시간지연을 갖는 네트워크 제어 시스템의 지능형 제어기 설계)

  • Bae, Gi-Sun;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.139-144
    • /
    • 2011
  • We consider the stabilization problem for a class of networked control systems with random delays in the discrete-time domain. The controller-to-actuator and sensor-to-controller time-delays are modeled as two Markov chains, and the resulting closed-loop systems are Markovian jump nonlinear systems with two modes. The T-S (Takagi-Sugeno) fuzzy model is employed to represent a nonlinear system with Markovian jump parameters. The aim is to design a fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. The necessary and sufficient conditions on the existence of stabilizing fuzzy controllers are established in terms of LMIs (Linear Matrix Inequalities). It is shown that fuzzy controller gains are mode-dependent. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method.

H Control of Networked Control Systems with Two Additive Time-varying Delays (시변 시간지연을 갖는 네트워크 제어 시스템의 H 제어)

  • Kim, Jae Man;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • This paper presents a stabilization method for NCS (Networked Control Systems) with two additive time-varying delays. Each time delay component between the plant and the controller has different characteristics depending on communication network, and has the upper and lower bounds. The time delay occurring from the controller to the plant has an effect on the time delay occurring from the plant to the controller, and the relationship between two delays is taken into account on the stability analysis. Based on the two additive delay components and the bound conditions, the appropriate Lyapunov-Krasovskii functional and the LMI (Linear Matrix Inequality) method derive the stability condition and the $H_{\infty}$ norm constraint for time-varying delayed NCS. Simulation results are finally given to demonstrate the effectiveness of the proposed method.

Stability Analysis of Networked Control Systems with Packet Dropouts (패킷 손실을 고려한 네트워크 제어 시스템의 안정성 분석)

  • Kim, Jae-Man;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1731_1732
    • /
    • 2009
  • This paper presents a stability analysis of networked control systems with packet dropouts. The packet dropouts are modeled as a linear function of the stochastic variable satisfying Bernoulli random binary distribution and weighted moving average (WMA). The observer based controller scheme is designed to exponentially mean square stabilize the NCS. Simulation results is provided to show the applicability of the proposed method.

  • PDF

Finite Alphabet Control and Estimation

  • Goodwin, Graham C.;Quevedo, Daniel E.
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.412-430
    • /
    • 2003
  • In many practical problems in signal processing and control, the signal values are often restricted to belong to a finite number of levels. These questions are generally referred to as "finite alphabet" problems. There are many applications of this class of problems including: on-off control, optimal audio quantization, design of finite impulse response filters having quantized coefficients, equalization of digital communication channels subject to intersymbol interference, and control over networked communication channels. This paper will explain how this diverse class of problems can be formulated as optimization problems having finite alphabet constraints. Methods for solving these problems will be described and it will be shown that a semi-closed form solution exists. Special cases of the result include well known practical algorithms such as optimal noise shaping quantizers in audio signal processing and decision feedback equalizers in digital communication. Associated stability questions will also be addressed and several real world applications will be presented.