KSII Transactions on Internet and Information Systems (TIIS)
/
제15권8호
/
pp.2783-2804
/
2021
In the network function virtualization environment, dynamic changes in network traffic will lead to the dynamic changes of service function chain resource demand, which entails timely dynamic adjustment of service function chain resource configuration. At present, most researches solve this problem through virtual network function migration and link rerouting, and there exist some problems such as long service interruption time, excessive network operation cost and high penalty. This paper proposes a dynamic adjustment method of service function chain resource configuration for the dynamic changes of network traffic. First, a dynamic adjustment request of service function chain is generated according to the prediction of network traffic. Second, a dynamic adjustment strategy of service function chain resource configuration is determined according to substrate network resources. Finally, the resource configuration of a service function chain is pre-adjusted according to the dynamic adjustment strategy. Virtual network functions combination and virtual machine reusing are fully considered in this process. The experimental results show that this method can reduce the influence of service function chain resource configuration dynamic adjustment on quality of service, reduce network operation cost and improve the revenue of service providers.
네트워크 슬라이싱 기능이 모바일 네트워킹에 적용되면서 네트워크 슬라이스를 선택할 수 있는 메커니즘이 필수적이다. 5G 아키텍처에 대한 3GPP 표준 기술 사양에 따라 슬라이스 선택 프로세스를 활용하기 위해 Network Slice Selection Function (NSSF)가 포함되어 있다. 이 네트워크 기능의 실제 구현은 네트워크 인스턴스의 동적 변경 사항을 처리해야하므로 가상 네트워크 기능 (VNF)의 오케스트레이션을 지원하는 플랫폼이 필요하다. 제안 된 솔루션은 Central Office Rearchitected as a Data Center (CORD) 플랫폼에서 모바일 네트워크용으로 특화된 M-CORD를 사용하고 있다. 이는 서비스 오케스트레이터인 XoS를 통합하는 플랫폼 및 Software Defined Networking (SDN), Network Function Virtualization (NFV) 및 클라우드를 관리하는 OpenStack에 기반하고 있다. 이 플랫폼을 통해, 본 논문에서 제시된 NSSF 구현은 백엔드 서비스와 네트워크 기능 인스턴스 간의 동기화를 통해서 동적으로 슬라이스 정보를 얻을 수 있는 적절한 생태계를 제공하고 있다.
RBFN has some problem that because the basis function isnt orthogonal to each others the number of used basis function goes to big. In this reason, the Wavelet Neural Network which uses the orthogonal basis function in the hidden node appears. In this paper, we propose the composition method of the actual function in hidden layer with the scaling function which can represent the region by which the several wavelet can be represented. In this method, we can decrease the size of the network with the pure several wavelet function. In addition to, when we determine the parameters of the scaling function we can process rough approximation and then the network becomes more stable. The other wavelets can be determined by the global solutions which is suitable for the suggested problem using the genetic algorithm and also, we use the back-propagation algorithm in the learning of the weights. In this step, we approximate the target function with fine tuning level. The complex neural network suggested in this paper is a new structure and important simultaneously in the point of handling the determination problem in the wavelet initialization.
This paper describes a new structure re create a pseudo Gaussian function network (PGFN). The activation function of hidden layer does not necessarily have to be symmetric with respect to center. To give the flexibility of the network, the deviation of pseudo Gaussian function is changed according to a direction of given input. This property helps that given function can be described effectively with a minimum number of center by PGFN, The distribution of deviation is represented by level set method and also the loaming of deviation is adjusted based on it. To demonstrate the performance of the proposed network, general problem of function estimation is treated here. The representation problem of continuous functions defined over two-dimensional input space is solved.
Journal of the Korean Data and Information Science Society
/
제16권4호
/
pp.815-821
/
2005
Among the various artificial neural networks the backpropagation network (BPN) has become a standard one. One of the components in a neural network is an activating function or a transfer function of which a representative function is a sigmoid. We have discovered that by updating the slope parameter of a sigmoid function simultaneous with the weights could improve performance of a BPN.
The purpose of this study was to identify the types of social networks of urban housewives according to different network composition patterns and to analyze the structural and functional characteristics of identified types. The data used in this study were collected from 589 full-time housewives residing in Taejeon city. The major findings are as follows: 1) The social networks of housewives in urban nuclear families were classified into eight types: the kin network, the non-kin network, the kin-centered network, the friend-centered network, the neighbor-centered network, the associate-centered network, the parallel network, and the decentralized network. 2) The structual characteristics (size, density, homogeneity, duration, proximity, frequency, closeness, direction) varied according to the type. The kin network type and the non-kin network type showed extreme degrees in network characteristics. The parallel network type and the decentralized network type showed an average level of network characteristics. The kin-, friend-, neighbor-, and the associate-centered types showed network characteristics of an intermediate level between the single-category types and the decentralized type. 3) The average levels of function of social network types were different in only two(service support, interference) of the six function areas(emotional support, service support, material support, information support, social companionship support, interference). The average level of service support by the non-kin network type was higher than other types. The average level of interference by the kin-centered network type was higher than other types, and that of the neighbor-centered network type was lower than other types. On the other hand, the total amount of function performance of social network types was different in all function areas. The total amount of social support given by the decentralized network type was greater than the other types. The total amount of interference given by the non-kin network type was smaller than the other types.
Middleware offers function that user application program can transmit data independently of network device. Connection management about network connection of module is important for normal service of module base personal robot. Unpredictable network disconnection is influenced to whole robot performance in module base personal robot. For this, Middleware must be offer two important function. The first is function of error detection and reporting about abnormal network disconnection. Therefore, middleware need method for network error detection and module management to consider special quality that each network device has. The second is the function recovering that makes the regular service possible. When the module closed from connection reconnects, as this service reports connection state of the corresponding module, the personal robot resumes the existing service. In this paper proposed method of network connection management for to support fault tolerant about network error of network module based personal robot.
본 논문은 5G 모바일 네트워크에서 가상화 기반의 이동통신 코어망인 Virtualized Evolved Packet Core(vEPC) 환경을 고려하여, 가입자의 종류 및 트래픽 식별에 따라 동적으로 End-to-end 서비스를 제공하기 위한 기술인 Service Function Chaining(SFC)을 적용하기 위한 구조 및 메시지 절차를 제안한다. SFC 기술은 네트워크 기능들을 물리적인 연결에 상관없이 선택적으로 제공하기 위한 기술로써, 가상화 기반 네트워크 기술인 Network Function Virtualization(NFV)기반의 네트워크 환경에서 서비스 제공을 위한 주요 기술로 예상된다. 특히, 5G 모바일 코어 네트워크는 분산 코어 형태로 구축될 것으로 예상되기 때문에 본 논문에서는 이를 고려하여 계층적 SFC(hSFC: Hierarchical SFC) 구조를 적용하였다. 본 논문에서는 제안하는 구조 및 구조 내에서의 SFC를 이용한 경로 설정 메시지 절차를 정의하고 오픈소스 기반의 테스트베드 설계를 통해 이를 구현하고자 하였다.
In this paper, radial basis function networks with two hidden layers, which employ the K-means clustering method and the hierarchical training, are proposed for improving the short-term predictability of chaotic time series. Furthermore the recursive training method of radial basis function network using the recursive modified Gram-Schmidt algorithm is proposed for the purpose. In addition, the radial basis function networks trained by the proposed training methods are compared with the X.D. He A Lapedes's model and the radial basis function network by nonrecursive training method. Through this comparison, an improved radial basis function network for predicting chaotic time series is presented. (author). 17 refs., 8 figs., 3 tabs.
The purpose of this study is quantitative analysis of the effects of the interactions between stream network and hillslope to hydrologic response functions. To this end general formulation of hydrologic response function is performed based on width function and grid framework. Target basins are Ipyeong and Tanbu basins. From the results of width function estimation even similar sized and closely located basins could have very different hydrologic response function. It is found out that the interactions between stream network and hillslope are essential factors of rainfall-runoff processes because their difference can make the hydrologic response function with positive skewness. The change of velocities of stream network and hillslope might influence the magnitude of peak but time to peak tends to more sensitively respond to velocities of stream network. Lag time of basin would be the result of complex interaction between drainage structures and dynamic properties of river basin.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.