DOI QR코드

DOI QR Code

Analysis of Behavioral Properties for Hydrologic Response Function according to the Interaction between Stream Network and Hillslope

하천망과 구릉지사면 사이의 상호작용에 따른 수문학적 응답함수의 거동특성 분석

  • Yoon, Yeo Jin (Department of Civil & Environmental Engineering, Konyang University) ;
  • Kim, Joo Cheol (K-water Institute, Korea Water Resources Corporation)
  • 윤여진 (건양대학교 건설환경공학과) ;
  • 김주철 (한국수자원공사 K-water연구원)
  • Received : 2011.07.09
  • Accepted : 2011.07.29
  • Published : 2011.09.30

Abstract

The purpose of this study is quantitative analysis of the effects of the interactions between stream network and hillslope to hydrologic response functions. To this end general formulation of hydrologic response function is performed based on width function and grid framework. Target basins are Ipyeong and Tanbu basins. From the results of width function estimation even similar sized and closely located basins could have very different hydrologic response function. It is found out that the interactions between stream network and hillslope are essential factors of rainfall-runoff processes because their difference can make the hydrologic response function with positive skewness. The change of velocities of stream network and hillslope might influence the magnitude of peak but time to peak tends to more sensitively respond to velocities of stream network. Lag time of basin would be the result of complex interaction between drainage structures and dynamic properties of river basin.

Keywords

References

  1. 김재한, 윤석영(1993). 소유역의 수로기하학적특성과 사면을 고려한 유역순간단위도의 유도. 대한토목학회논문집, 13(2), pp. 161-171.
  2. 김주철, 최용준, 정동국(2011). 유역의 동수역학적 특성을 고려한 합성단위도 기법의 제시. 대한토목학회논문집, 31(1B), pp. 47-55.
  3. 이기하, 윤의혁, 김주철, 정관수(2011). DEM을 이용한 수로망 산정기법에 따른 유역의 배수구조 평가. 대한토목학회논문집, 31(1B), pp. 1-11.
  4. 최용준, 김주철, 정동국(2010). 미계측유역의 유출량 산정을 위한 합성단위도 개발. 수질보전 한국물환경학회지, 26(3), pp. 532-539.
  5. Botter, G. and Rinaldo, A. (2003). Scale effect on geomorphologic and kinematic dispersion. Water Resour. Res., 39(10), pp. SWC6.1-SWC6.10.
  6. Di Lazzaro, M. (2009). Regional analysis of storm hydrographs in the rescaled width function framework. J. Hydro., 373, pp. 352-365. https://doi.org/10.1016/j.jhydrol.2009.04.027
  7. D'odorico, P. and Rigon, R. (2003). Hillslope and channel contributions to the hydrologic response. Water Resour. Res., 39(5), pp. SWC1.1-SWC1.9.
  8. Mesa, O. J. and Mifflin, E. R. (1988). On the relative role of hillslope and network geometry in hydrologic response. Scale Problems in Hydrology, D. Reidel Publishing, pp. 181-190.
  9. Rinaldo, A., Botter, G., Bertuzzo, E., Uccelli, A., Settin, T., and Marani, M. (2006). Transport at basin scales: 1. Theoretical framework. Hydro. Earth Sys. Scie., 10, pp. 19-29. https://doi.org/10.5194/hess-10-19-2006
  10. Rinaldo, A., Marani, A., and Rigon, R. (1991). Geomorphological dispersion, Water Resour. Res., 27(4), pp. 513-525. https://doi.org/10.1029/90WR02501
  11. Rinaldo, A., Vogel, G. K., and Rodriguez-Iturbe, I. (1995). Can one gauge the shape of a basin?. Water Resour. Res., 31(4), pp. 1119-1128. https://doi.org/10.1029/94WR03290
  12. Rodríguez-Iturbe, I. and Rinaldo, A. (2003). Fractal River Basins, Chance and Self-organization, Cambridge.
  13. Rodriguez-Iturbe, I. and Valdes, J. B. (1979). The geomorphologic structure of hydrologic response. Water Resour. Res., 15(6), pp. 1409-1420. https://doi.org/10.1029/WR015i006p01409
  14. Saco, P. M. and Kumar, P. (2002). Kinematic dispersion in stream networks 1. Coupling hydraulic and network geometry. Water Resour. Res., 38(11), pp. 26-1-26-24.
  15. Sherman, L. K. (1932). Streamflow from rainfall by unit-graph method, Engineering News-Record, 108, pp. 501-505.
  16. Smart, J. S. (1972). Channel networks. Advan.. Hydrosci., 8, pp. 305-346.
  17. van der Tak, L. D. and Bras, R. L. (1990). Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph. Water Resour. Res., 26(10), pp. 2393-2400. https://doi.org/10.1029/WR026i010p02393