• 제목/요약/키워드: Nanotube structure

검색결과 292건 처리시간 0.023초

이중층 탄소나노튜브 전계전자 방출원의 신뢰성 있는 전계방출 특성 (A Reliable Field Emission Performance of Double-Walled Carbon Nanotube Field Emitters)

  • 정승일;이승백
    • 한국진공학회지
    • /
    • 제17권6호
    • /
    • pp.566-575
    • /
    • 2008
  • 촉매 화학기상증착법을 이용하여 합성된 이중층 탄소나노튜브를 가지고 전계전자 방출원을 제작하여 이들의 신뢰성 있는 전계전자 방출특성을 조사하였다. 합성된 탄소 필라멘트들은 TEM, TGA, 그리고 Raman 분석을 통하여 결함이 없고 순도가 높은 이중층 탄소나노튜브가 합성이 되었음을 확인하였다. 이들 이중층 탄소나노튜브 전계전자 방출원은 이전극 구조에서 낮은 턴-온 전계와 높은 전류밀도의 전계전자 방출 특성을 보여주었고, 균질한 전계방출 패턴과 좋은 전계방출 안정성을 나타내었다.

플라즈마 기상 화학 증착법을 이용한 탄소나노튜브의 선택적 수직성장 기술 (Selective Growth of Freestanding Carbon Nanotubes Using Plasma-Enhanced Chemical Vapor Deposition)

  • 방윤영;장원석
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.113-120
    • /
    • 2007
  • Chemical vapor deposition (CVD) is one of the various synthesis methods that have been employed for carbon nanotube (CNT) growth. In particular, Ren et al reported that large areas of vertically aligned multi-wall carbon nanotubes could be grown using a direct current (dc) PECVD system. The synthesis of CNT requires a metal catalyst layer, etchant gas, and a carbon source. In this work, the substrates consists of Si wafers with Ni-deposited film. Ammonia $NH_3$) and acetylene ($C_2H_2$) were used as the etchant gases and carbon source, respectively. Pretreated conditions had an influence on vertical growth and density of CNTs. And patterned growth of CNTs could be achieved by lithographical defining the Ni catalyst prior to growth. The length of single CNT was increased as niclel dot size increased, but the growth rate was reduced when nickel dot size was more than 200 nm due to the synthesis of several CNTs on single Ni dot. The morphology of the carbon nanotubes by TEM showed that vertical CNTs were multi-wall and tip-type growth mode structure in which a Ni cap was at the end of the CNT.

Reconstruction of Vacancy Defects in Graphene and Carbon Nanotube

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon;Wang, Cai-Zhuang;Ho, Kai-Ming
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.340-340
    • /
    • 2010
  • Various structures of vacancy defects in graphene layers and carbon nanotubes have been reported by high resolution transmission electron microscope (HR-TEM) and those arouse an interest of reconstruction processes of vacancy defects. In this talk, we present reconstruction processes of vacancy defects in a graphene and a carbon nanotube by tight-binding molecular dynamics (TBMD) simulations and by first principles total energy calculations. We found that a structure of a dislocation defect with two pentagon-heptagon (5-7) pairs in graphene becomes more stable than other structures when the number of vacancy units is ten and over. The simulation study of scanning tunneling microscopy reveals that the pentagon-heptagon pair defects perturb the wavefunction of electrons near Fermi level to produce the $\sqrt{3}\;{\times}\;\sqrt{3}$ superlattice pattern, which is in excellent agreement with experiment. It is also observed in our tight-binding molecular dynamics simulation that 5-7 pair defects play a very important role in vacancy reconstruction in a graphene layer and carbon nanotubes.

  • PDF

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Rajabzadeh-Safaei, Niloofar
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.493-516
    • /
    • 2019
  • This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.

Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation

  • Mohamed, Nazira;Eltaher, Mohamed A.;Mohamed, Salwa A.;Seddek, Laila F.
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.737-750
    • /
    • 2019
  • This paper investigates the static and dynamic behaviors of imperfect single walled carbon nanotube (SWCNT) modeled as a beam structure by using energy-equivalent model (EEM), for the first time. Based on EEM Young's modulus and Poisson's ratio for zigzag (n, 0), and armchair (n, n) carbon nanotubes (CNTs) are presented as functions of orientation and force constants. Nonlinear Euler-Bernoulli assumptions are proposed considering mid-plane stretching to exhibit a large deformation and a small strain. To simulate the interaction of CNTs with the surrounding elastic medium, nonlinear elastic foundation with cubic nonlinearity and shearing layer are employed. The equation governed the motion of curved CNTs is a nonlinear integropartial-differential equation. It is derived in terms of only the lateral displacement. The nonlinear integro-differential equation that governs the buckling of CNT is numerically solved using the differential integral quadrature method (DIQM) and Newton's method. The linear vibration problem around the static configurations is discretized using DIQM and then is solved as a linear eigenvalue problem. Numerical results are depicted to illustrate the influence of chirality angle and imperfection amplitude on static response, buckling load and dynamic behaviors of armchair and zigzag CNTs. Both, clamped-clamped (C-C) and simply supported (SS-SS) boundary conditions are examined. This model is helpful especially in mechanical design of NEMS manufactured from CNTs.

Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions

  • Alimirzaei, S.;Mohammadimehr, M.;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.485-502
    • /
    • 2019
  • In this research, the nonlinear static, buckling and vibration analysis of viscoelastic micro-composite beam reinforced by various distributions of boron nitrid nanotube (BNNT) with initial geometrical imperfection by modified strain gradient theory (MSGT) using finite element method (FEM) are presented. The various distributions of BNNT are considered as UD, FG-V and FG-X and also, the extended rule of mixture is used to estimate the properties of micro-composite beam. The components of stress are dependent to mechanical, electrical and thermal terms and calculated using piezoelasticity theory. Then, the kinematic equations of micro-composite beam using the displacement fields are obtained. The governing equations of motion are derived using energy method and Hamilton's principle based on MSGT. Then, using FEM, these equations are solved. Finally the effects of different parameters such as initial geometrical imperfection, various distributions of nanotube, damping coefficient, piezoelectric constant, slenderness ratio, Winkler spring constant, Pasternak shear constant, various boundary conditions and three material length scale parameters on the behavior of nonlinear static, buckling and vibration of micro-composite beam are investigated. The results indicate that with an increase in the geometrical imperfection parameter, the stiffness of micro-composite beam increases and thus the non-dimensional nonlinear frequency of the micro structure reduces gradually.

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates

  • Kolahdouzan, Farzad;Mosayyebi, Mohammad;Ghasemi, Faramarz Ashenai;Kolahchi, Reza;Panah, Seyed Rouhollah Mousavi
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.237-250
    • /
    • 2020
  • An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin;Bo Zhang;Xiaojing Duan
    • Advances in nano research
    • /
    • 제14권5호
    • /
    • pp.435-442
    • /
    • 2023
  • Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

NaF 전해용액을 이용한 양극산화에 의한 타이타늄 표면의 나노튜브구조의 형성에 관한 연구 (Investigation on Formation of Nanotube Titanium Oxide Film by Anodizing on Titanium in NaF Electrolytes)

  • 임현필;박남순;박상원
    • 구강회복응용과학지
    • /
    • 제25권2호
    • /
    • pp.183-190
    • /
    • 2009
  • 본 연구의 목적은 NaF와 $H_3PO_4$를 사용하여 양극산화과정을 통해 나노튜브 제작 조건을 찾는 것이다. 절삭된 직경 15 mm, 두께 1.5 mm의 티타늄 디스크를 양극에, 백금을 음극에 연결하고 전극간의 거리는 10 mm가 되도록 하였다. $H_3PO_4$와 NaF 용액을 전해질로 하여 양극산화를 시행하였는데 전압, 전해질 농도, 산화시간을 달리하여 티타늄 디스크에 나노튜브를 형성하였다. 양극산화 후 24시간 동안 증류수로 세척한 후 24시간 동안 $40^{\circ}C$ 오븐에서 건조하고 시편의 표면구조 형상을 관찰 분석하였다. 실험 결과 0.5 wt % NaF에서 전압과 시간이 증가함에 따라 pore 형태의 초기 나노튜브 형성되었다. 1.0 wt % NaF에서 20 V, 20 분과 25 분에서 나노튜브가 생성되었고, 30 V에서 튜브의 형태가 커지면서 터지는 양상을 보였다. 2.0 wt % NaF에서 전압과 시간에 상관없이 적절한 나노튜브형태가 형성되지 않았다. $1M\;H_3PO_4$, 1.0 wt % NaF 전해용액, 20 V, 20분 양극산화 조건에서 티타늄 디스크 상에 가장 잘 정렬된 형태의 나노튜브 구조가 형성되었다. 양호한 형태의 나노튜브 형성을 위해서는 전해질의 종류에 따라 적절한 농도, 전압, 시간의 형성조건이 필요할 것으로 사료된다.