Browse > Article
http://dx.doi.org/10.12989/anr.2020.9.4.237

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates  

Kolahdouzan, Farzad (Faculty of Mechanical Engineering, University of Kashan)
Mosayyebi, Mohammad (Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University)
Ghasemi, Faramarz Ashenai (Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University)
Kolahchi, Reza (Institute of Research and Development, Duy Tan University)
Panah, Seyed Rouhollah Mousavi (Faculty of Electronic Engineering, Shamsipour Technical and Vocational College)
Publication Information
Advances in nano research / v.9, no.4, 2020 , pp. 237-250 More about this Journal
Abstract
An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.
Keywords
buckling; free vibration; FG-CNTRC; sandwich annular nanoplate; elastically restrained edges;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Karami, B., Janghorban, M. and Tounsi, A. (2018), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 2018, 1-20. https://doi.org/10.1007/s00366-018-0664-9.
2 Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.
3 Ke, L.L., Liu, C. and Wang, Y.S. (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Physica E Low Dimens. Syst. Nanostruct., 66, 93-106. https://doi.org/10.1016/j.physe.2014.10.002.   DOI
4 Kiani, Y. (2017), "Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load", Thin-Wall. Struct., 111, 48-57. https://doi.org/10.1016/j.tws.2016.11.011.   DOI
5 Lei, Z., Liew, K.M. and Yu, J. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006.   DOI
6 Malekzadeh, P. and Ouji, A. (2008), "Axisymmetric buckling analysis of laterally restrained thick annular plates using a hybrid numerical method", Int. J. Press. Vessel. Piping, 85(11), 789-797. https://doi.org/10.1016/j.ijpvp.2008.07.001.   DOI
7 Mehar, K. and Kumar Panda, S. (2018), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.   DOI
8 Mehar, K., Kumar Panda, S. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. A Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
9 Motezaker, M. and Eyvazian, A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., Int. J., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289.
10 Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.   DOI
11 Panda, S. and Singh, B. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004.   DOI
12 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.   DOI
13 Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.   DOI
14 Talebitooti, M. (2013), "Three-dimensional free vibration analysis of rotating laminated conical shells: Layerwise differential quadrature (LW-DQ) method", Arch. Appl. Mech., 83(5), 765-781. https://doi.org/10.1007/s00419-012-0716-3.   DOI
15 Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.   DOI
16 Van Vuure, A.W., Ivens, J. and Verpoest, I. (2000), "Mechanical properties of composite panels based on woven sandwich-fabric preforms", Compos. Part A Appl. Sci. Manuf., 31(7), 671-680. https://doi.org/10.1016/S1359-835X(00)00017-8.   DOI
17 Alipour, M. (2016), "Effects of elastically restrained edges on FG sandwich annular plates by using a novel solution procedure based on layerwise formulation", Arch. Civ. Mech. Eng., 16(4), 678-694. https://doi.org/10.1016/j.acme.2016.04.015.   DOI
18 Alipour, M. and Shariyat, M. (2017), "Analytical layerwise free vibration analysis of circular/annular composite sandwich plates with auxetic cores", Int. J. Mech. Mater. Des., 13(1), 125-157. https://doi.org/10.1007/s10999-015-9321-2.   DOI
19 Ansari, R., Torabi, J. and Shojaei, M.F. (2017), "Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading", Compos. Part B Eng., 109, 197-213. https://doi.org/10.1016/j.compositesb.2016.10.050.   DOI
20 Wang, M., Li, Z.M. and Qiao, P. (2016), "Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates", Compos. Struct., 144, 33-43. https://doi.org/10.1016/j.compstruct.2016.02.025.   DOI
21 Yue, X., He, W., Meng, T. and Song, Y. (2019), "Vibration control and stability analysis of a nanobeam with boundary prescribed performance", Int. J. Control, 2019, 1-10. https://doi.org/10.1080/00207179.2019.1629026.
22 Zhang, L., Song, Z. and Liew, K. (2015), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011.   DOI
23 Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247X(71)90110-7.   DOI
24 Burman, M. and Zenkert, D. (2000), "Fatigue of undamaged and damaged honeycomb sandwich beams", J. Sandw. Struct. Mater., 2(1), 50-74. https://doi.org/10.1177/109963620000200103.   DOI
25 Ebrahimi, F. and Rastgoo, A. (2008), "Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers", Smart Mater. Struct., 17(1), 015044. https://doi.org/10.1088/0964-1726/17/1/015044.   DOI
26 Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97. https://doi.org/10.12989/anr.2017.5.2.069.
27 Ebrahimi, F., Rastgoo, A. and Atai, A. (2009), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech. A Solids, 28(5), 962-973. https://doi.org/10.1016/j.euromechsol.2008.12.008.   DOI
28 Ebrahimi, F., Karimiasl, M., Civalek, O. and Vinyas, M. (2019), "Surface effects on scale-dependente vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., Int. J., 7(9), 77-88. http://dx.doi.org/10.12989/anr.2019.7.2.077.   DOI
29 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
30 Ferreira, A., Fasshauer, G., Batra, R. and Rodrigues, J. (2008), "Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter", Compos. Struct., 86(4), 328-343. https://doi.org/10.1016/j.compstruct.2008.07.025.   DOI
31 Vinson, J.R. (1999), The Behavior of Sandwich Structures of Isotropic and Composite Materials, CRC Press, Pennsylvania, USA.
32 Gdoutos, E., Daniel, I.M. and Wang, K. (2002), "Indentation failure in composite sandwich structures", Exp. Mech., 42(4), 426-431. https://doi.org/10.1007/BF02412148.   DOI
33 George, A., Shah, P.A. and Shrivastav, P.S. (2019), "Natural biodegradable polymers-based nano-formulations for drug delivery: A review", Int. J. Pharm., 561, 244-264. https://doi.org/10.1016/j.ijpharm.2019.03.011.   DOI
34 Ghorbanpour-Arani, A., Mosayyebi, M., Kolahdouzan, F., Kolahchi, R. and Jamali, M. (2017), "Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers", Proc. Inst. Mech. Eng. G J. Aerosp. Eng., 231(13), 2464-2478. https://doi.org/10.1177/0954410016667150.   DOI
35 Ghorbanpour-Arani, A., Kolahdouzan, F. and Abdollahian, M. (2018), "Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory", Appl. Math. Mech., 39(4), 529-546. https://doi.org/10.1007/s10483-018-2319-8.   DOI
36 Guo, Y., Jiang, Y. and Huang, B. (2019), "Independent coordinate coupling method for vibration analysis of a functionally graded carbon nanotube-reinforced plate with central hole", Adv. Mech. Eng., 11(8), 1687814019872924. https://doi.org/10.1177/1687814019872924.
37 Hajmohammad, M.H., Sharif Zarei, M., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., Int. J., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299.   DOI
38 Herrmann, A.S., Zahlen, P.C. and Zuardy, I. (2005), Sandwich Structures 7: Advancing with Sandwich Structures and Materials, Springer, Aalborg, Denmark.
39 Hosseini Hashemi, S.H., Es'haghi, M. and Karimi, M. (2010), "Closed-form vibration analysis of thick annular functionally graded plates with integrated piezoelectric layers", Int. J. Mech. Sci., 52(3), 410-428. https://doi.org/10.1016/j.ijmecsci.2009.10.016.   DOI