DOI QR코드

DOI QR Code

이중층 탄소나노튜브 전계전자 방출원의 신뢰성 있는 전계방출 특성

A Reliable Field Emission Performance of Double-Walled Carbon Nanotube Field Emitters

  • 정승일 (한양대학교 나노반도체공학과) ;
  • 이승백 (한양대학교 나노반도체공학과)
  • Jung, S.I. (Department of Nanoscale Semiconductor Engineering, Hanyang University) ;
  • Lee, S.B. (Department of Nanoscale Semiconductor Engineering, Hanyang University)
  • 발행 : 2008.11.30

초록

촉매 화학기상증착법을 이용하여 합성된 이중층 탄소나노튜브를 가지고 전계전자 방출원을 제작하여 이들의 신뢰성 있는 전계전자 방출특성을 조사하였다. 합성된 탄소 필라멘트들은 TEM, TGA, 그리고 Raman 분석을 통하여 결함이 없고 순도가 높은 이중층 탄소나노튜브가 합성이 되었음을 확인하였다. 이들 이중층 탄소나노튜브 전계전자 방출원은 이전극 구조에서 낮은 턴-온 전계와 높은 전류밀도의 전계전자 방출 특성을 보여주었고, 균질한 전계방출 패턴과 좋은 전계방출 안정성을 나타내었다.

We investigated the field emission characteristics from the planar field emitters made of double-walled carbon nanotubes (DWCNTs) synthesized by a catalytic chemical vapor deposition (CCVD) method. Transmission electron microscopy, Thermogravimetric and Raman analysis showed that the carbon materials have a low defect level in their atomic carbon structure, pointing to the synthesis of high-purity DWCNTs. For field emission properties of DWCNTs, the turn-on field of DWCNTs was $1.9\;V/{\mu}m$ and the current density was about $74\;mA/cm^2$ at $8.1\;V/{\mu}m$, which is sufficient for the applications of field emission displays and vacuum microelectronic devices. The DWCNT field emitters also exhibited a uniform field emission pattern and good field emission stability in a diode configuration.

키워드

참고문헌

  1. S. Iijima, Nature. 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer, Nature. 388, 756 (1997) https://doi.org/10.1038/41972
  3. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995) https://doi.org/10.1016/0009-2614(95)00825-O
  4. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Science. 274, 1701(1996) https://doi.org/10.1126/science.274.5293.1701
  5. M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, D. R. M. Walton, Nature. 388, 52 (1997) https://doi.org/10.1038/40369
  6. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, Science. 275, 187 (1997) https://doi.org/10.1126/science.275.5297.187
  7. R. Sen, A. Govindaraj, C. N. R. Rao, Chem. Phys. Lett. 267, 276 (1997) https://doi.org/10.1016/S0009-2614(97)00080-8
  8. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, Science. 282, 1105 (1998) https://doi.org/10.1126/science.282.5391.1105
  9. J. F. Colomer, G. Bister, I. Willems, Z. Konya, A. Fonseca, G. Van Tendeloo, J. B. Nagy, Chem. Commun. 1343 (1999)
  10. C. L. Cheung, A. Kurtz, H. Park, C. M. Lieber, J. Phys. Chem. B. 106, 2429 (2002) https://doi.org/10.1021/jp0142278
  11. L. An, J. M. Owens, L. E. McNeil, J. Liu, J. Am. Chem. Soc. 124, 13688 (2002) https://doi.org/10.1021/ja0274958
  12. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan, Science. 296, 884 (2002) https://doi.org/10.1126/science.1066996
  13. W. E. Alvarez, F. Pompeo, J. E. Harrera, L. Balzano, D. E. Resasco, Chem. Mater. 14, 1853 (2002) https://doi.org/10.1021/cm011613t
  14. W. A. de Heer, A. Chatelain, D. Ugarte, Science. 270, 1179 (1995) https://doi.org/10.1126/science.270.5239.1179
  15. P. M. Ajayan, O. Stephan, Ph. Redlich, C. Colliex, Nature. 375, 564 (1995) https://doi.org/10.1038/375564a0
  16. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Greeligs, C. Dekker, Nature. 386, 474 (1997) https://doi.org/10.1038/386474a0
  17. G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Nature. 393, 346 (1998) https://doi.org/10.1038/30694
  18. K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim, Y. H. Lee, Adv. Mater. 13, 497 (2001) https://doi.org/10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
  19. K. S. Kim, J. H. Ryu, C. S. Lee, H. E. Lim, J. S. Ahn, J. Jang and K. C. Park, J. Korean Vac. Soc. 17, 90 (2008) https://doi.org/10.5757/JKVS.2008.17.2.090
  20. M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, M. Terrones, M. S. Dresselhaust, Nature. 433, 476 (2005) https://doi.org/10.1038/433476a
  21. R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, M. S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001) https://doi.org/10.1016/S0009-2614(01)01127-7
  22. H. Kurachi, S. Uemura, J. Yotani, T. Nagasako, H.Yamada, T. Ezaki, T. Maesoba, R. Loutfy, A. Moravsky, T. Nakagawa, S. Katagiri, Y. Saito, Proceedings of 21st International Display Research Conference/ 8th International Display Workshops: Society for Information Display: San Jose, CA, 2001, pp 1245-1248
  23. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999) https://doi.org/10.1063/1.125253
  24. M. Sveningsson, M. Jönsson, O. A. Nerushev, F. Rohmund, and E. E. B. Campbell, Appl. Phys. Lett. 81, 1095 (2002) https://doi.org/10.1063/1.1498493
  25. K. A. Dean and B. R. Chalamala, Appl. Phys. Lett. 76, 375 (2000) https://doi.org/10.1063/1.125758
  26. S. C. Lyu, B. C. Liu, S. H. Lee, C. Y. Park, H. K. Kang, C. W. Yang, C. J. Lee, J. Phys. Chem. B. 108, 2192 (2004) https://doi.org/10.1021/jp030955e
  27. T. J. Vink, M. Gillies, J. C. Kriege and H. W. J. J. Van de Laar, Appl. Phys. Lett. 83, 3552 (2003) https://doi.org/10.1063/1.1622789
  28. J. L. Hutchison, N. A. Kiselev, E. P. Krinichnaya, A. V. Krestinin, R. O. Loutfy, A. P. Morawsky, V. E. Muradyan, E. D. Obraztsova, J. Sloan, S. V. Terekhov and D. N. Zakharov, Carbon. 39, 761 (2001) https://doi.org/10.1016/S0008-6223(00)00187-1
  29. Y. Saito, T. Nakahira, S. Uemura, J. Phys. Chem. B. 107, 931 (2003) https://doi.org/10.1021/jp021367o
  30. B. Ha, D. H. Shin, J. Park and C. J. Lee, J. phys. Chem. C. 112, 430 (2008) https://doi.org/10.1021/jp0768468
  31. C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett. 81, 1869 (1998) https://doi.org/10.1103/PhysRevLett.81.1869
  32. S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, S. Iijima, Chem. Phys. Lett. 337, 48 (2001) https://doi.org/10.1016/S0009-2614(01)00192-0
  33. W. Ren, F. Li, J. Chen, S. Bai, H. M. Cheng, Chem. Phys. Lett. 359, 196 (2002) https://doi.org/10.1016/S0009-2614(02)00686-3
  34. A. M. Rao, J. Chen, E. Richter, U. Schlecht, P. C. Eklund, R. C. Haddon, U. D. Venkateswaran, Y.-K. Kwon and D. Tomanek, Phys. Rev. Lett. 86, 3895 (2001) https://doi.org/10.1103/PhysRevLett.86.3895
  35. B. Ha, D. H. Shin, J. Park and C. J. Lee, J. phys. Chem. C. 112, 430 (2008) https://doi.org/10.1021/jp0768468
  36. Y. D. Lee, H. J. Lee, J. H. Han, J. E. Yoo, Y. H. Lee, J. K. Kirn, S. Nahm, B. K. Ju, J. Phys. Chem. B. 110, 5310 (2006) https://doi.org/10.1021/jp0548624
  37. S. Y. Kim, J. Y. Lee, J. Park, C. J. Park, C. J. Lee, H. J. Shin, Chem. Phys. Lett. 420, 271 (2006) https://doi.org/10.1016/j.cplett.2005.12.084
  38. P. R. Somani, S. P. Somani, S. P. Lau, E. Flahaut, M. Tanemura, M. Umeno, Solid-State Electron. 51, 788 (2007) https://doi.org/10.1016/j.sse.2007.02.041