DOI QR코드

DOI QR Code

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin (Department of Sports Work, Hebei Agricultural University) ;
  • Bo Zhang (Department of Physical Education and Teaching, Hebei Finance University) ;
  • Xiaojing Duan (Department of Functional Ultrasound, Affiliated Hospital of Hebei University)
  • Received : 2022.04.25
  • Accepted : 2022.08.29
  • Published : 2023.05.25

Abstract

Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.

Keywords

References

  1. Alexandrescu, L., SO nmez, M., Georgescu, M., NiTuicĂ, M., Ficai, A., Trusca, R., GurĂu, D. and Tudoroiu, L. (2017), "Polyamide/Polypropylene/graphene oxide nanocomposites with functional compatibilizers: Morpho-structural and physicomechanical characterization", Procedia Struct. Integr., 5, 675-682. https://doi.org/10.1016/j.prostr.2017.07.042.
  2. Ates, M., Eker, A.A. and Eker, B. (2017), "Carbon nanotube-based nanocomposites and their applications", J. Adhes. Sci. Technol., 31(18), 1977-1997. https://doi.org/10.1080/01694243.2017.1295625.
  3. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  4. Bisoi, S., Mandal, A.K., Padmanabhan, V. and Banerjee, S. (2017), "Aromatic polyamides containing trityl substituted triphenylamine: Gas transport properties and molecular dynamics simulations", J. Membr. Sci., 522, 77-90. https://doi.org/10.1016/j.memsci.2016.09.007.
  5. Cao, Z., Zhang, L., Ahmad, A.M., Alsaadi, F.E. and Alassafi, M.O. (2022), "Adaptive neural prescribed performance control for switched pure-feedback non-linear systems with input quantization", Assembl. Automat., 42(6), 869-880. https://doi.org/10.1108/AA-05-2022-0126.
  6. Chen, X. (2022), "Research on optimal control method of tennis racket string diameter based on kalman filter algorithm", J. Electr. Comput. Eng., 2022, 9356608. https://doi.org/10.1155/2022/9356608.
  7. Cheng, F., Niu, B., Zhang, L. and Chen, Z. (2022), "Prescribed performance-based low-computation adaptive tracking control for uncertain nonlinear systems with periodic disturbances", IEEE T. Circ. Syst. II, 69(11), 4414-4418. https://doi.org/10.1109/TCSII.2022.3181190.
  8. Cibo, M., Sator, A., Kazlagic, A. and Omanovic-Miklicanin, E. (2020). "Application and impact of nanotechnology in sport", Proceeding of the 30th Scientific-Experts Conference of Agriculture and Food Industry, 349-362.
  9. Du, M., Li, M., Song, W. and Zheng, N. (2022), "Metal-free multicomponent polymerization toward cationic polyamidines", Chinese Chem. Lett.,. 33(5), 2643-2647. https://doi.org/10.1016/j.cclet.2021.09.031.
  10. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  11. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  12. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141.
  13. Farsi, M., Eshghi, A. and Lashgari, A. (2012), "A study on some properties of polypropylene based nanocomposites made using almond shell flour and organoclay", Asian J. Chem., 25, 1043-1049. https://doi.org/10.14233/ajchem.2013.13416.
  14. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  15. Ghadiri, M., Shafiei, N. and Babaei, R. (2017), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  16. Harifi, T. and Montazer, M. (2015), "Application of nanotechnology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: A review", J. Ind. Textile., 46(5), 1147-1169. https://doi.org/10.1177/1528083715601512.
  17. Hsiao, S.H., Peng, S.C., Kung, Y.R., Leu, C.M. and Lee, T.M. (2015), "Synthesis and electro-optical properties of aromatic polyamides and polyimides bearing pendent 3,6-dimethoxycarbazole units", Eur. Polym. J., 73, 50-64. https://doi.org/10.1016/j.eurpolymj.2015.10.004.
  18. Hu, Z., He, G., Zhang, X., Huang, T., Li, H., Zhang, Y., Xie, D., Song, X., Ning, X. and Ning, F. (2023), "Impact behavior of nylon kernmantle ropes for high-altitude fall protection", J. Eng. Fiber. Fabrics, 18, 15589250231167401. https://doi.org/10.1177/15589250231167401.
  19. Ji, Y. (2012), "The applied research of nano-material in athletic facilities and sports equipments", Adv. Mater. Res., 459, 398-401. https://doi.org/10.4028/www.scientific.net/AMR.459.398.
  20. Kannan, C., Lokhande, A., Manickam, R., Murali, N. and Mathivanan, G. (2021), "A study on carbon fiber based polymer rein force composites", REST J. Emerg. Trends Modell. Manuf., 7, 2021. https://doi.org/10.46632/7/3/5.
  21. Li, G. and Cheng, Y. (2013), "The application prospects of nanotechnology in future competitive sports development", Adv. Mater. Res., 662, 190-193. https://doi.org/10.4028/www.scientific.net/AMR.662.190.
  22. Li, P., Yang, M. and Wu, Q. (2021), "Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk", IEEE T. Sust. Energ., 12(1), 58-69. https://doi.org/10.1109/TSTE.2020.2978634.
  23. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  24. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  25. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017c), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A., 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  26. Miteva, A. (2021), "Nanotechnology in sport and security", Strategies for Policy in Science and Education-Strategii na Obrazovatelnata i Nauchnata Politika, 29, 46-53. https://doi.org/10.53656/str2021-4s-5-nano.
  27. Mitiakoudis, A. and Gandini, A. (1991), "Synthesis and characterization of furanic polyamides", Macromolecules. 24(4), 830-835. https://doi.org/10.1021/ma00004a003.
  28. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155.
  29. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dent., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002.
  30. Peng, Y., Wu, Y., Wang, K., Gao, G. and Ahzi, S. (2019), "Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication", Compos. Struct., 207, 232-239. https://doi.org/10.1016/j.compstruct.2018.09.014.
  31. Rahmat, M. and Hubert, P. (2011), "Carbon nanotube-polymer interactions in nanocomposites: A review", Compos. Sci. Technol., 72(1), 72-84. https://doi.org/10.1016/j.compscitech.2011.10.002.
  32. Ramirez-Herrera, C.A., Cabanas-Moreno, J.G., Solorza-Feria, O., Perez-Gonzalez, J., Flores-Vela, A. and Romero-Partida, N. (2016). "Preparation and properties of polypropylene-carbon nanotubes nanocomposites for application in bipolar plates", Proceedings of the 2016 XVI International Congress of the Mexican Hydrogen Society (CSMH), 26-30, September. https://doi.org/10.1109/CSMH.2016.7947656.
  33. Rezania, J., Hayatipour, M., Shockravi, A., Ehsani, M. and Vatanpour, V. (2019), "Synthesis and characterization of soluble aromatic polyamides containing double sulfide bond and thiazole ring", Polym. Bull., 76(3), 1547-1556. https://doi.org/10.1007/s00289-018-2441-8.
  34. Rusu, E. and Onciu, M. (2005), "Synthesis and properties of new polyamides based on 2'-(4-dimethylaminocinnamoyloxy)ethyl3,5-diaminobenzoate", Des. Monomers Polym., 8(1), 37-47. https://doi.org/10.1163/1568555053084212.
  35. Sahoo, N.G., Rana, S., Cho, J.W., Li, L. and Chan, S.H. (2010), "Polymer nanocomposites based on functionalized carbon nanotubes", Prog. Polym. Sci., 35(7), 837-867. https://doi.org/10.1016/j.progpolymsci.2010.03.002.
  36. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  37. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  38. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016b), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  39. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Methods Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  40. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016c), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  41. Shang, W., Li, D.L., Xu, W.C. and Yu, X.M. (2013), "Preparation and properties of polypropylene/expended vermiculite micronano composite", Adv. Mater. Res., 602-604, 265-272. https://doi.org/10.4028/www.scientific.net/AMR.602-604.265.
  42. Sheng, C., He, G., Hu, Z., Chou, C., Shi, J., Li, J., Meng, Q., Ning, X., Wang, L. and Ning, F. (2021), "Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber", J. Eng. Fibers Fabr., 16, 15589250211052766. https://doi.org/10.1177/15589250211052766.
  43. Si, Z., Yang, M., Yu, Y. and Ding, T. (2021), "Photovoltaic power forecast based on satellite images considering effects of solar position", Appl. Energ., 302, 117514. https://doi.org/10.1016/j.apenergy.2021.117514.
  44. Tang, M., Yang, L. and Zhou, H. (2013). "Applications and safety of nanotechnology and nanomaterials in sports", Inform. Manag. Sci. IV, 337-343. https://doi.org/10.1007/978-1-4471-4793-0_41.
  45. Wang, M., Yang, M., Fang, Z., Wang, M. and Wu, Q. (2022a), "A practical feeder planning model for urban distribution system", IEEE T. Power Syst., 1-1. https://doi.org/10.1109/TPWRS.2022.3170933.
  46. Wang, P. and Wang, J.Y. (2014), "Development and application of nanotechnology in sports", Adv. Mater. Res., 918, 54-58. https://doi.org/10.4028/www.scientific.net/AMR.918.54.
  47. Wang, T., He, J., Lu, J., Zhou, Y., Wang, Z. and Zhou, Y. (2022), "Adsorptive removal of PPCPs from aqueous solution using carbon-based composites: A review", Chinese Chem. Lett., 33(8), 3585-3593. https://doi.org/10.1016/j.cclet.2021.09.029.
  48. Wang, Y., Niu, B., Ahmad, A., Liu, Y., Wang, H., Zong, G. and Alsaadi, F. (2022b), "Adaptive command filtered control for switched multi-input multi-output nonlinear systems with hysteresis inputs", Int. J. Adapt. Control Signal Proc., 36(12), 3023-3042. https://doi.org/10.1002/acs.3501.
  49. Wang, Z., Dai, L., Yao, J., Guo, T., Hrynsphan, D., Tatsiana, S. and Chen, J. (2021), "Enhanced adsorption and reduction performance of nitrate by Fe-Pd-Fe3O4 embedded multi-walled carbon nanotubes", Chemosphere, 281, 130718. https://doi.org/10.1016/j.chemosphere.2021.130718.
  50. Wen, Q. (2022), "Health-care technology of badminton sports based on nanotechnology", J. Nanomater., 8637768. https://doi.org/10.1155/2022/8637768.
  51. Wu, K., Wang, B., Tang, B., Luan, L., Xu, W., Zhang, B. and Niu, Y. (2022), "Adsorption of aqueous Cu(II) and Ag(I) by silica anchored Schiff base decorated polyamidoamine dendrimers: Behavior and mechanism", Chinese Chem. Lett., 33(5), 2721-2725. https://doi.org/10.1016/j.cclet.2021.08.126.
  52. Xu, R. (2021), "Modern biotechnology and nanotechnology in competitive sports", Ferroelectrics, 578(1), 179-193. https://doi.org/10.1080/00150193.2021.1902779.
  53. Yang, K., Guan, J., Numata, K., Wu, C., Wu, S., Shao, Z. and Ritchie, R.O. (2019), "Integrating tough Antheraea pernyi silk and strong carbon fibres for impact-critical structural composites", Nature Commun., 10(1), 3786. https://doi.org/10.1038/s41467-019-11520-2.
  54. Young, R. and Liu, M. (2016a), "The microstructure of a graphene-reinforced tennis racquet", J. Mater. Sci., 51. https://doi.org/10.1007/s10853-015-9705-6.
  55. Young, R.J. and Liu, M. (2016b), "The microstructure of a graphene-reinforced tennis racquet", J. Mater. Sci., 51(8), 3861-3867. https://doi.org/10.1007/s10853-015-9705-6.
  56. Yuan, R., Fan, S., Wu, D., Wang, X., Yu, J., Chen, L. and Li, F. (2018), "Facile synthesis of polyamide 6 (PA6)-based thermoplastic elastomers with a well-defined microphase separation structure by melt polymerization", Polym. Chem., 9(11), 1327-1336. https://doi.org/10.1039/C8PY00068A.
  57. Zhang, H., Wang, H., Niu, B., Zhang, L. and Ahmad, A.M. (2021), "Sliding-mode surface-based adaptive actor-critic optimal control for switched nonlinear systems with average dwell time", Inform. Sci., 580, 756-774. https://doi.org/10.1016/j.ins.2021.08.062.
  58. Zhang, H., Zhao, X., Wang, H., Zong, G. and Xu, N. (2022), "Hierarchical sliding-mode surface-based adaptive actor-critic optimal control for switched nonlinear systems with unknown perturbation", IEEE T. Neural Netw. Learn. Syst., 1-13. https://doi.org/10.1109/TNNLS.2022.3183991.
  59. Zhang, S., Zhang, J., Tang, L., Huang, J., Fang, Y., Ji, P., Wang, C. and Wang, H. (2019), "A novel synthetic strategy for preparing polyamide 6 (PA6)-based polymer with transesterification", Polymers, 11(6). https://doi.org/10.3390/polym11060978.
  60. Zhou, H., Cao, W., Sun, N., Jiang, L., Liu, Y. and Pang, H. (2021a), "Formation mechanism and properties of NiCoFeLDH @ZIF-67 composites", Chinese Chem. Lett., 32(10), 3123-3127. https://doi.org/10.1016/j.cclet.2021.03.050.
  61. Zhou, S., Wang, Y., Zhou, K., Ba, D., Ao, Y. and Wang, P. (2021b), "In-situ construction of Z-scheme g-C3N4/WO3 composite with enhanced visible-light responsive performance for nitenpyram degradation", Chinese Chem. Lett., 32(7), 2179-2182. https://doi.org/10.1016/j.cclet.2020.12.002.