• 제목/요약/키워드: Nanostructures

Search Result 732, Processing Time 0.023 seconds

Study on the Preparation of TiO2 3D Nanostructure for Photocatalyst by Wet Chemical Process (습식화학공정에 의한 광촉매용 TiO2 3차원 나노구조체 제조 연구)

  • Lee, Duk-Hee;Park, Jae-Ryang;Lee, Chan-Gi;Park, Kyoung-Tae;Park, Kyung-Soo
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.381-387
    • /
    • 2020
  • In this work, TiO2 3D nanostructures (TF30) were prepared via a facile wet chemical process using ammonium hexafluorotitanate. The synthesized 3D TiO2 nanostructures exhibited well-defined crystalline and hierarchical structures assembled from TiO2 nanorods with different thicknesses and diameters, which comprised numerous small beads. Moreover, the maximum specific surface area of TiO2 3D nanostructures was observed to be 191 ㎡g-1, with concentration of F ions on the surface being 2 at%. The TiO2 3D nanostructures were tested as photocatalysts under UV irradiation using Rhodamine B solution in order to determine their photocatalytic performance. The TiO2 3D nanostructures showed a higher photocatalytic activity than that of the other TiO2 samples, which was likely associated with the combined effects of a high crystallinity, unique features of the hierarchical structure, a high specific surface area, and the advantage of adsorbing F ions.

Structural Formulation of As-grown Vertically Aligned Nanostructures to Multifunctional Thin-Film Frameworks through Controlled Mechanical Rolling (기계적 롤링을 통한 수직배향 나노구조의 다용도 박막 프레임워크 변환)

  • Park, Tae Jun;Choi, Seok Min;Youn, Do Kyung;Lee, Seungjo;Park, Jaekyu;Lee, Jae Hyuk;Kim, Jeong Dae;Lee, Han Kil;Ok, Jong G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.266-270
    • /
    • 2016
  • We present a useful and practical manufacturing technique that enables the structural conversion of delicate as-grown nanostructures to more beneficial and robust thin-film frameworks through controlled mechanical rolling. Functional nanostructures such as carbon nanotubes grown through chemical vapor deposition in a vertically aligned and very loosely packed manner, and thus difficult to manipulate for subsequent uses, can be prepared in an array of thin blades by patterning the growth catalyst layer. They can then be toppled as dominos through precisely controlled mechanical rolling. The nanostructures formulated to horizontally aligned thin films are much more favorable for device applications typically based on thin-film configuration. The proposed technique may broaden the functionality and applicability of as-grown nanostructures by converting them into thin-film frameworks that are easier to handle and more durable and favorable for fabricating thin-film devices for electronics, sensors, and other applications.

High-sensitivity ZnO gas Sensor with a Sol-gel-processed SnO2 Seed Layer (Sol-Gel 방법으로 제작된 SnO2 seed layer를 적용한 고반응성 ZnO 가스 센서)

  • Kim, Sangwoo;Bak, So-Young;Han, Tae Hee;Lee, Se-Hyeong;Han, Ye-ji;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.420-426
    • /
    • 2020
  • A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.

Nanostructuring the Polyimide Alignment Layer and Uniform Liquid Crystal Alignment by Solvent Assisted Micromolding (Solvent Assisted Micromolding을 이용한 Polyimide 나노구조 형성 및 이를 통한 균일 액정 배향)

  • Kim, Jongbok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.72-77
    • /
    • 2019
  • The display that provides information to us through the visual sense is a very important information transmission means by intuitively transmitting information, and the liquid crystal display (LCD) is the most widely used information transmission display. In this paper, we studied solvent assisted micromolding as an alternative for the rubbing that is essential to align the liquid crystals in LCD and successfully aligned the liquid crystal molecules by constructing the nanostructures on conventional polyimide alignment layer. When generating the nanostructures on the polyimide film, there was a competitive correlation between the dissolution effect of the polymer by the solvent and the capillary effect of the polyimide molecules into the nanostructures of the mold depending on the process temperature. It was possible to form nanostructures with high step by deriving the optimum temperature. These nanostructures were able to align the liquid crystal molecules uniformly and demonstrated that they could form a desirable pretilt angle.

Interband Transition and Confinement of Charge Carriers in CdS and CdS/CdSe Quantum Dots

  • Man, Minh Tan;Lee, Hong Seok
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.167-171
    • /
    • 2015
  • Quantum-confined nanostructures open up additional perspectives in engineering materials with different electronic and optical properties. We have fabricated unique cation-exchanged CdS and CdS/CdSe quantum dots and measured their first four exciton transitions. We demonstrate that the relationship between electronic transitions and charge-carrier distributions is generalized for a broad range of core-shell nanostructures. These nanostructures can be used to further improve the performance in the fields of bio-imaging, light-emitting devices, photovoltaics, and quantum computing.

Growth of Bi2O3 doped ZnO nanostructures fabricated by thermal evaporation method

  • Kim, Gyeong-Beom;Kim, Seon-Hong;Jeong, Yeong-Hun;Lee, Yeong-Jin;Baek, Jong-Hu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.243-243
    • /
    • 2009
  • Bi2O3 doped ZnO nanostructures structure were successfully synthesized by a thermal evaporatiion process and their structural characteristics were investigated. It is demonstrated that the growth condition such as the areal density, pretreatment of the substrates and growth temperature have great influence on the morphology and the alignment of the nanorods arrays. The density of Bi2O3 doped ZnO nanostructures is controlled by the gold (Au) nanoparticle density deposited on the silicon substrates. Relatively homogenous size and shape were observed by introducing gold(Au) seed-layer as nucleation centers on the substrates prior to the VLS reaction. The samples were characterized by X-ray diffraction, scanning electron microscopy.

  • PDF

Ni(OH)2 and NiO Nanostructures: Synthesis, Characterization and Electrochemical Performance

  • Saghatforoush, Lotf Ali;Hasanzadeh, Mohammad;Sanati, Soheila;Mehdizadeh, Robabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2613-2618
    • /
    • 2012
  • Hydrothermal route have been used in different conditions for preparation of $Ni(OH)_2$ nanostructures. The NiO nanoparticles were obtained by calcining the $Ni(OH)_2$ precursor at $450^{\circ}C$ for 2 h. The effect of sodium dodecyl sulfonate (SDS) as surfactant on the morphology and size of $Ni(OH)_2$ nanoparticles were discussed in detail. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the products. The growth mechanism of the as-synthesized nanostructures was also discussed in detail based on the experimental results. Coming up, the NiO nanoparticle modified carbon paste electrode was applied to the determination of captopril in aqueous solution.

X-Ray Resonant Magnetic Scattering Study of Magnetic Structures and Magnetic Switching Mechanism in Magnetic Multilayers and Nanostructures (엑스선 공명 자기 산란을 이용한 자성 다층박막 및 나노 구조체의 자기 구조와 자기 스위칭 메커니즘의 연구)

  • Lee, Dong-Ryeol
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.160-166
    • /
    • 2010
  • X-ray resonant magnetic scattering (XRMS) allows us to extract magnetic depth profiles in magnetic multilayers and magnetization distribution in magnetic nanostructures in element-specific manner using x-ray reflectivity and diffraction. XRMS is explained with a brief introduction and examples of magnetic structures and magnetic switching mechanism in magnetic multilayers and nanostructures.

Inorganic nanomaterial-based biocatalysts

  • Lee, Soo-Youn;Lee, Ji-Ho;Chang, Jeong-Ho;Lee, Jin-Hyung
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.77-86
    • /
    • 2011
  • Over the years, nanostructures have been developed to enable to support enzyme usability to obtain highly selective and efficient biocatalysts for catalyzing processes under various conditions. This review summarizes recent developments in the nanostructures for enzyme supporters, typically those formed with various inorganic materials. To improve enzyme attachment, the surface of nanomaterials is properly modified to express specific functional groups. Various materials and nanostructures can be applied to improve both enzyme activity and stability. The merits of the incorporation of enzymes in inorganic nanomaterials and unprecedented opportunities for enhanced enzyme properties are discussed. Finally, the limitations encountered with nanomaterial-based enzyme immobilization are discussed together with the future prospects of such systems.

Development of Nanostructured Plasmonic Substrates for Enhanced Optical Biosensing

  • Byun, Kyung-Min
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.65-76
    • /
    • 2010
  • Plasmonic-based biosensing technologies have been successfully commercialized and applied for monitoring various biomolecular interactions occurring at a sensor surface. In particular, the recent advances in nanofabrication methods and nanoparticle syntheses provide a new route to overcome the limitations of a conventional surface plasmon resonance biosensor, such as detection limit, sensitivity, selectivity, and throughput. In this paper, optical and physical properties of plasmonic nanostructures and their contributions to a realization of enhanced optical detection platforms are reviewed. Following vast surveys of the exploitation of metallic nanostructures supporting localized field enhancement, we will propose an outlook for future directions associated with a development of new types of plasmonic sensing substrates