Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.2.065

Development of Nanostructured Plasmonic Substrates for Enhanced Optical Biosensing  

Byun, Kyung-Min (Department of Biomedical Engineering, Kyung Hee University)
Publication Information
Journal of the Optical Society of Korea / v.14, no.2, 2010 , pp. 65-76 More about this Journal
Abstract
Plasmonic-based biosensing technologies have been successfully commercialized and applied for monitoring various biomolecular interactions occurring at a sensor surface. In particular, the recent advances in nanofabrication methods and nanoparticle syntheses provide a new route to overcome the limitations of a conventional surface plasmon resonance biosensor, such as detection limit, sensitivity, selectivity, and throughput. In this paper, optical and physical properties of plasmonic nanostructures and their contributions to a realization of enhanced optical detection platforms are reviewed. Following vast surveys of the exploitation of metallic nanostructures supporting localized field enhancement, we will propose an outlook for future directions associated with a development of new types of plasmonic sensing substrates
Keywords
Surface plasmons; Localized surface plasmon; Biosensor; Metallic nanostructures; Nanofabrication;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, Germany, 1988).
2 M. Malmqvist, “Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol. 5, 282-286 (1993).   DOI   ScienceOn
3 T. Akimoto, S. Sasaki, K. Ikebukuro, and I. Karube, “Effect of incident angle of light on sensitivity and detection limit for layers of antibody with surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 15, 355-362 (2000).   DOI   ScienceOn
4 B. Johnsson, S. Lofas, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Chem. 198, 268-277 (1991).
5 B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,”Nature 332, 615-617 (1988).   DOI
6 J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).   DOI   ScienceOn
7 S. A. Kim, S. J. Kim, S. H. Lee, T. H. Park, K. M. Byun, S. G. Kim, and M. L. Shuler, “Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor,” J. Opt. Soc. Korea 13, 392-397 (2009).   DOI   ScienceOn
8 B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance - how it all started,” Biosens. Bioelectron. 10, 1-4 (1995).   DOI   ScienceOn
9 H. Libardi and H. P. Grieneisen, “Guided-mode resonance absorption in partly oxidized thin silver films,” Thin Solid Films 333, 82-87 (1998).   DOI   ScienceOn
10 X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B 84, 106-112 (2002).   DOI   ScienceOn
11 M. Piliarik and J. Homola, “Surface plasmon resonance sensors: approaching their limits?,” Opt. Exp. 17, 16505-16517 (2009).   DOI
12 E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685-1706 (2004).   DOI   ScienceOn
13 R. Karlsson and A. Falt, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods 200, 121-133 (1997).   DOI   ScienceOn
14 J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 337, 528-539 (2003).
15 A. L. Plant, M. Brigham-Burke, E. C. Petrella, and D. J. O’Shannessy, “Phospholipid/alkanethiol bilayers for cellsurface receptor studies by surface plasmon resonance,” Anal. Biochem. 226, 342-348 (1995).   DOI   ScienceOn
16 S. A. Kim, K. M. Byun, J. Lee, J. H. Kim, D.-G. A. Kim, H. Baac, M. L. Shuler, and S. J. Kim, “Optical measurement of neural activity using surface plasmon resonance,” Opt. Lett. 33, 914-916 (2008).   DOI   ScienceOn
17 B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73, 1-7 (2001).   DOI   ScienceOn
18 K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523, 165-170 (2004).   DOI   ScienceOn
19 M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).   DOI   ScienceOn
20 P. Stocker, B. Menges, U. Langbein, and S. Mittler, “Multimode waveguide mode surface plasmon coupling: a sensitivity and device realizability study,” Sens. Actuators A 116, 224-231 (2004).   DOI   ScienceOn
21 C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69, 4939-4947 (1997).   DOI   ScienceOn
22 A. V. Kabashin and P. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Comm.150, 5-8 (1998).   DOI   ScienceOn
23 S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243-247 (1998).   DOI   ScienceOn
24 T. Ohno, J. A. Bain, and T. E. Schlesinger, “Observation of geometrical resonance in optical throughput of very small aperture lasers associated with surface plasmons,” J. Appl. Phys. 101, 083107 (2007).   DOI   ScienceOn
25 K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A 24, 522-529 (2007).   DOI   ScienceOn
26 L. Li and C. W. Haggans, “Convergence of the coupledwave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184-1189 (1993).   DOI
27 K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Exp. 13, 3737-3742 (2005).   DOI
28 K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowiremediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006).   DOI   ScienceOn
29 K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures,” J. Opt. Soc. Am. A 26, 1027-1034 (2009).   DOI   ScienceOn
30 J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).   DOI   ScienceOn
31 L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006).   DOI   ScienceOn
32 E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004).   DOI   ScienceOn
33 K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007).   DOI   ScienceOn
34 C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007).   DOI   ScienceOn
35 C. L. Haynes and R. P. van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of sizedependent nanoparticle optics,” J. Phys. Chem. B 105, 5599-5611 (2001).   DOI   ScienceOn
36 J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Mater. Today 8, 50-56 (2005).
37 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).   DOI   ScienceOn
38 H. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6, 2104-2108 (2006).   DOI   ScienceOn
39 R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41, 1049-1057 (2008).   DOI   ScienceOn
40 A. de Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094-4100 (2007).   DOI   ScienceOn
41 A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813-4815 (2004).   DOI   ScienceOn
42 A. J. Haes and R. P. van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596-10604 (2002).   DOI   ScienceOn
43 E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” J. Phys. Chem. B 105, 11159-11168 (2001).   DOI   ScienceOn
44 E. F. A. de Vries, R. B. M. Schasfoort, J. van der Plas,and J. Greve, “Nucleic acid detection with surface plasmon resonance using cationic latex,” Biosens. Bioelectron. 9,509-514 (1994).   DOI   ScienceOn
45 E. Fujii, T. Koike, K. Nakamura, S. Sasaki, K. Kurihara, D. Citterio, Y. Iwasaki, O. Niwa, and K. Suzuki, “Application of an absorption-based surface plasmon resonance principle to the development of SPR ammonium ion and enzyme sensors,” Anal. Chem. 74, 6106-6110 (2002).   DOI   ScienceOn
46 L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).   DOI   ScienceOn
47 T. Zhu, X. Zhang, J. Wang, X. Fu, and Z. Liu, “Assembling colloidal Au nanoparticles with functionalized self-assembled monolayers,” Thin Solid Films 327-329, 595-598 (1998).   DOI   ScienceOn
48 W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanoclusterembedded dielectric film,” Biosens. Bioelectron. 19, 1465-1471(2004).   DOI   ScienceOn
49 J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77, 4282-4285 (2005).   DOI   ScienceOn
50 M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494-521 (2008).   DOI   ScienceOn
51 Y. Xiong, H. Cai, B. J. Wiley, J. Wang, M. J. Kim, and Y. Xia, “Synthesis and mechanistic study of palladium nanobars and nanorods,” J. Am. Chem. Soc. 129, 3665-3675(2007).   DOI   ScienceOn
52 P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37, 37-47 (2005).   DOI   ScienceOn
53 J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401-405 (1995).   DOI   ScienceOn
54 J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, and R. P. van Duyne, “Resonance surface plasmon spectroscopy:low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128, 11004-11005 (2006).   DOI   ScienceOn
55 A. D. McFarland and R. P. van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057-1062 (2003).   DOI   ScienceOn
56 A. Roucoux, J. Schulz, and H. Patin, “Reduced transition metal colloids: a novel family of reusable catalysts?,” Chem. Rev. 102, 3757-3778 (2002).   DOI   ScienceOn
57 N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389-1393 (2001).   DOI   ScienceOn
58 A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787-796 (1989).   DOI
59 Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661-6664 (1997).   DOI   ScienceOn
60 M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257-264 (2001).   DOI   ScienceOn
61 K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).   DOI   ScienceOn
62 W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137-141 (2003).   DOI   ScienceOn
63 M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986).   DOI
64 J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219-228 (2006).   DOI
65 X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).   DOI   ScienceOn
66 E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid. Interf. Sci. 143, 513-526 (1991).   DOI   ScienceOn
67 L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Auenhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177-5183 (1998).   DOI   ScienceOn
68 Y. Li, A. W. Wark, H. J. Lee, and R. M. Corn, “Singlenucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions,” Anal. Chem. 78, 3158-3164 (2006).   DOI   ScienceOn
69 J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125-135 (2005).   DOI   ScienceOn
70 X. Liu, Y. Sun, D. Song, Q. Zhang, Y. Tian, S. Bi, and H. Zhang, “Sensitivity-enhancement of wavelength-modulation surface plasmon resonance biosensor for human complement factor 4,” Anal. Biochem. 333, 99-104 (2004).   DOI   ScienceOn
71 M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581-583 (1983).   DOI
72 L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092-3094 (2007).   DOI   ScienceOn
73 K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26, 1472-1478 (2008).   DOI   ScienceOn
74 A. J. Haes, S. Zou, G. C. Schatz, and R. P. van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004).   DOI   ScienceOn
75 A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957-960 (1982).   DOI
76 C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., New York, USA, 1998).
77 S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” J. Phys. Chem. B 103, 4212-4217 (1999).   DOI   ScienceOn
78 J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Exp. 6, 213-219 (2000).   DOI
79 E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, “Synthesis and optical properties of “Branched” gold nanocrystals,” Nano Lett. 4, 327-330 (2004).   DOI   ScienceOn
80 L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B 54, 118-124 (1999).   DOI   ScienceOn
81 U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Germany, 1995).
82 S. Underwood and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir 10, 3427-3430 (1994).   DOI   ScienceOn
83 K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).   DOI   ScienceOn
84 P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788-800 (1996).   DOI   ScienceOn