Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.5.381

Study on the Preparation of TiO2 3D Nanostructure for Photocatalyst by Wet Chemical Process  

Lee, Duk-Hee (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering)
Park, Jae-Ryang (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering)
Lee, Chan-Gi (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering)
Park, Kyoung-Tae (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Park, Kyung-Soo (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering)
Publication Information
Journal of Powder Materials / v.27, no.5, 2020 , pp. 381-387 More about this Journal
Abstract
In this work, TiO2 3D nanostructures (TF30) were prepared via a facile wet chemical process using ammonium hexafluorotitanate. The synthesized 3D TiO2 nanostructures exhibited well-defined crystalline and hierarchical structures assembled from TiO2 nanorods with different thicknesses and diameters, which comprised numerous small beads. Moreover, the maximum specific surface area of TiO2 3D nanostructures was observed to be 191 ㎡g-1, with concentration of F ions on the surface being 2 at%. The TiO2 3D nanostructures were tested as photocatalysts under UV irradiation using Rhodamine B solution in order to determine their photocatalytic performance. The TiO2 3D nanostructures showed a higher photocatalytic activity than that of the other TiO2 samples, which was likely associated with the combined effects of a high crystallinity, unique features of the hierarchical structure, a high specific surface area, and the advantage of adsorbing F ions.
Keywords
$TiO_2$; 3D nanostructure; Wet chemical process; Photocatalytic activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. C. Pan, N. N. Zhao, Q. Wang, S. C. Jiang and L. J. An: Adv. Mater., 17 (2005) 1991.   DOI
2 J. M. Macak, H. Tsuchiya and P. Schmuki: Angew. Chem. Int. Ed., 44 (2005) 2100.   DOI
3 G. Wu, J. Wang, D. F. Thomas and A. Chen: Langmuir, 24 (2008) 3503.   DOI
4 T. Zhu, J. Li and Q. Wu: ACS Appl. Mater. Interface, 3 (2011) 3448.   DOI
5 G. Tian, T. Chen, W. Zhou, K. Pan, C. Tian, X. Huang and H. Fu: Cryst. Eng. Comm., 13 (2011) 2994.   DOI
6 H. Li, T. Li, H. Liu, B. Huang and Q. Zhang: J. Alloys Compd., 657 (2016) 1.   DOI
7 Z. Wu, Q. Wu, L. Du, C. Jiang and L. Piao: Particuology, 15 (2014) 61.   DOI
8 H. Park and W. Choi: J. Phys. Chem. B, 108 (2004) 4086.   DOI
9 W. Gan, H. Niu, X. Shang, R. Zhou, Z. Guo, X. Mao, L. Wan, J. Xu and S. Miao: Phys. Status Solidi A, 213 (2016) 994.   DOI
10 Y. Fan, G. Chen, D. Li, Y. Luo, N. Lock, A. P. Jensen, A. Manakhel, J. Mi, S. B. Iversen, Q. Meng and B. B. Iversen: Inter. J. Photoenergy, 2012 (2011) 1.
11 S. S. Ma, J. J. Xue, Y. M. Zhou and Z. W. Zhang: J. Mater. Chem. A, 2 (2014) 7272.   DOI
12 J. G. Yu, Y. R. Su and B. Cheng: Adv. Funct. Mater., 17 (2007) 1984.   DOI
13 H. Li, T. Li, H. Liu, B. Huang and Q. Zhang: J. Alloys Compd., 657 (2016) 1.   DOI
14 M. A. Lara, M. J. Sayagues, J. A. Navio and M. C. Hidalgo: J. Mater. Sci., 53 (2018) 435.   DOI
15 S. Y. Lee and S. J. Park: J. Ind. Eng. Chem., 19 (2013) 1761.   DOI
16 M. N. Chong, B. Jin, C. W. K. Chow and C. Saint: Water Res., 44 (2010) 2997.   DOI
17 M. Rawolle, M. A. Ruderer, S. M. Prams, Q. Zhong, D. Magerl, J. Perlich, S.V. Roth, P. Lellig, J. S. Gutmann and P. Muller-Buschbaum: Small, 7 (2011) 884.   DOI
18 H. Y. Yin, X. L. Wang, L. Wang, Q. L. N and H. T. Zhao: J. Alloys Compd., 640 (2015) 68.   DOI
19 W. Q. Fang, J. Z. Zhou, J. Liu, Z. G. Chen, C. Yang, C. H. Sun, G. R. Qian, J. Zou, S. Z. Qiao and H. G. Yang: Chem. Eur. J, 17 (2011) 1423.   DOI
20 X. F. Yang, H. Y. Cui, Y. Li, J. L. Qin, R. X. Zhang and H. Tang: ACS Catal., 3 (2013) 363.   DOI
21 X. F. Guan, L. P. Li, G. S. Li, Z. W. Fu, J. Zheng and T. J. Yan: J. Alloys Compd., 509 (2011) 3367.   DOI
22 Y. F. Tang, L. Yang, J. Z. Chen and Z. Qiu: Langmuir, 26 (2010) 10111.   DOI
23 C. X. Wang, L. W. Yin, L. Y. Zhang, Y. X. Qi, N. Lun and N. N. Liu: Langmuir, 26 (2010) 12841.   DOI
24 J. Zhu, S. H. Wang, Z. F. Bian, C. L. Cai and H. X. Li: Res. Chem. Intermed., 35 (2009) 769.   DOI
25 J. Zhu, S. H. Wang, J. G. Wang, D. Q. Zhang and H. X. Li: Appl. Catal. B. Environ., 102 (2011) 120.   DOI
26 X. J. Lu, F. Q. Huang, X. L. Mou, Y. M. Wang and F. F. Xu: Adv. Mater., 22 (2010) 3719.   DOI