References
- Fernandez-Lorente, G., Palomo, J. M., Mateo, C., Munilla, R., Ortiz, C., Cabrera, Z., Guisan, J. M. and Fernandez- Lafuente, R. (2006) Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Biomacromolecules 7, 2610-2615. https://doi.org/10.1021/bm060408+
- Morana, A., Mangione, A., Maurelli, L., Fiume, I., Paris, O., Cannio, R. and Rossi, M. (2006) Immobilization and characterization of a thermostable beta-xylosidase to generate a reusable biocatalyst. Enzyme. Microb. Technol. 39, 1205-1213. https://doi.org/10.1016/j.enzmictec.2006.03.010
- Tardioli, P. W., Zanin, G. M. and de Moraes, F. F. (2006) Characterization of Thermoanaerobacter cyclomaltodextrin glucanotransferase immobilized on glyoxyl-agarose. Enzyme. Microb. Technol. 39, 1270-1278. https://doi.org/10.1016/j.enzmictec.2006.03.011
- Love. J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. and Whitesides, G. M. (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103-1169. https://doi.org/10.1021/cr0300789
- Morf, P., Raimondi, F., Nothofer, H. -G., Schnyder, B., Yasuda, A., Wessels, J. M. and Jung, T. A. (2006) Dithioccarbamates: functional and versatitle linkers forthe formation of self-assembled monolayers. Langmuir 22, 658-663. https://doi.org/10.1021/la052952u
- Laszlo, J. A. and Evans, K. O. (2007) Influence of self-assembled monolayer surface chemistry on Candida Antarctica lipase B adsorption and specific activity. J. Mol. Catal. B: Enzym. 48, 84-89. https://doi.org/10.1016/j.molcatb.2007.06.010
- Mazur, M., Krysinski, P., Michota-Kaminska, A. Bukowska, J., Rogalski, J. and Blanchard, G. J. (2007) Immobilization of laccase on gold, silver and indium tin oxide by zirconium-phosphonate-carboxylate (ZPC) coordination chemistry. Bioelectrochemistry 71, 15-22. https://doi.org/10.1016/j.bioelechem.2006.12.006
- Reis, P., Holmberg, K., Debeche, T., Folmer, B., Fauconnot, L. and Watzke, H. (2006) Lipase-Catalyzed Reactions at Different Surfaces. Langmuir 22, 8169-8177. https://doi.org/10.1021/la060913s
- Rusmini, F., Zhong, Z. and Feijen, J. (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8, 1775-1789. https://doi.org/10.1021/bm061197b
- Villalonga, R., Cao, R. and Fragoso, A. (2007) Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 107, 3088-3116. https://doi.org/10.1021/cr050253g
- Wu, C. -S., Wu, C. -T., Yang, Y. -S. and Ko, F. -H. (2008) An enzymatic kinetics investigation into the significantly enhanced activity of functionalized gold nanoparticles. Chem. Commun. 42, 5327-5329.
- Szamocki, R., Velichko, A., Mucklich, F., Reculusa, S., Ravaine, S., Neugebauer, S., Schuhmann, W., Hempelmann, R. and Kuhn, A. (2007) Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes. Electrochem. Commun. 9, 2121-2127. https://doi.org/10.1016/j.elecom.2007.06.008
-
Qiu, H., Li, Y., Ji, G., Zhou, G., Huang, X., Qu, Y. and Gao, P. (2009) Immobilization of lignin peroxidase on nanoporous gold: enzymatic properties and in situ release of
$H_2O_2$ by co-immobilized glucose oxidase. Bioresour. Technol. 100, 3837-3842. https://doi.org/10.1016/j.biortech.2009.03.016 - Chico, B., Camacho, C., Perez, M., Longo, M., Sanroman, M. A., Pingarron, J. M. and Villalonga, R. (2009) Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. J. Electroanal. Chem. 629, 126-132. https://doi.org/10.1016/j.jelechem.2009.02.004
- Zhang, Y., Zhang, Y., Wang, H., Yan, B., Shen, G. and Yu, R. (2009) An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. J. Electroanal. Chem. 627, 9-14. https://doi.org/10.1016/j.jelechem.2008.12.010
- Chen, J., Du, D., Yan, F., Ju, H. X. and Lian, H. Z. (2005) Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon-nanotube-modified electrode. Chem. Eur. J. 11, 1467-1472. https://doi.org/10.1002/chem.200400956
- Zhang, M., Smith, A. and Gorski, W. (2004) Coimmobilization of dehydrogenase and their cofactors in electrochemical biosensors. Anal. Chem. 76, 5045-5050. https://doi.org/10.1021/ac049519u
- Gooding, J. J., Wibowo, R., Liu, J., Yang, W., Losic, D., Orbons, S., Mearns, F. J., Shapter, J. G. and Hibbert, D. B. (2003) Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125, 9006-9007. https://doi.org/10.1021/ja035722f
- Jia, H., Zhu, G. and Wang, P. (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol. Bioeng. 84, 406-414. https://doi.org/10.1002/bit.10781
- Sarah, H., Jakki, C. and Edmond, M. (2008) Proteins in mesoporous silicates. Angew. Chem. Int. Ed. 47, 8582-8594. https://doi.org/10.1002/anie.200705238
- Wang, L., Wei, L., Chen, Y. and Jiang, R. (2010) Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. J. Biotechnol. 150, 57-63.
- Lee, J. Y., Shin, H. Y., Kang, S. W., Park, C. and Kim, S. W. (2010) Improvement of electrical properties via glucose oxidase-immobilization by actively turning over glucose for an enzyme-based biofuel cell modified with DNA-wrapped single walled nanotubes. Biosens. Bioelectron. doi: 10.1016/j.bios.2010.07.020.
- Wang, S. G., Zhang, Q., Wang, R., Yoon, S. F., Ahn, J., Yang, D. J., Tian, J. Z., Li, J. Q. and Zhou, Q. (2003) Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochem. Commun. 5, 800-803. https://doi.org/10.1016/j.elecom.2003.07.007
- Lee, K., Komathi, S., Nam, N. J. and Gopalan, A. L. (2010) Sulfonated polyaniline network grafted multi-wall carbon nanotubes for enzyme immobilization, direct electrochemistry and biosensing of glucose. Microchem. J. 95, 74-79. https://doi.org/10.1016/j.microc.2009.10.008
- Ebrahimi, B., Shojaosadati, S. A., Ranaie, S. O. and Mousavi, S. M. (2010) Optimization and evaluation of acetylcholine esterase immobilization on ceramic packing using response surface methodology. Process. Biochem. 45, 81-87. https://doi.org/10.1016/j.procbio.2009.08.007
- Lee, D., Ponvel, K. M., Kim, M., Hwang, S., Ahn, I. and Lee, C. (2009) Immobilization of lipase on hydrophobic nano-sized magnetite particles. J. Mol. Catal. B: Enzym. 57, 62-66. https://doi.org/10.1016/j.molcatb.2008.06.017
- Bayramoglu, G., Kiralp, S., Yilmaz, M., Toppare, L. and Arica, M. Y. (2008) Covalent immobilization of chloroperoxidase onto magnetic beads: catalytic properties and stability. Biochem. Eng. J. 38, 180-188. https://doi.org/10.1016/j.bej.2007.06.018
- Zeng, L., Luo, K. and Gong, Y. (2006) Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. J. Mol. Catal. B: Enzym. 38, 24-30. https://doi.org/10.1016/j.molcatb.2005.10.007
- Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S. (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710-712. https://doi.org/10.1038/359710a0
- Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H. and Sheppard, E. W. (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834-10843. https://doi.org/10.1021/ja00053a020
- Kim, J., Grate, J. W. and Wang, P. (2006) Nanostructures for Enzyme Stabilization. Chem. Eng. Sci. 61, 1017-1026. https://doi.org/10.1016/j.ces.2005.05.067
- Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F. and Stucky, G. D. (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548-552. https://doi.org/10.1126/science.279.5350.548
- Schmidt-Winkel, P., Lukens, W. W., Zhao, D. Y., Yang, P. D., Chmelka, B. F. and Stucky, G. D. (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc. 121, 254-255. https://doi.org/10.1021/ja983218i
- Shimomura, T., Itoh, T., Sumiya, T., Mizukami, F. and Ono, M. (2008) Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuators B 135, 268-275. https://doi.org/10.1016/j.snb.2008.08.025
- Santalla, E., Serra, E., Mayoral, A., Losada, J., Blanco, R. M. and Diaza, I. (2010) In-situ immobilization of enzymes in mesoporous silicas. Solid. State. Sci. doi:10.1016/j.solidstatesciences.2010.09.015.
- Maria Chong, A. S. and Zhao, X. S. (2004) Functionalized nanoporous silicas for the immobilization of penicillin acylase. Appl. Surf. Sci. 237, 398-404. https://doi.org/10.1016/j.apsusc.2004.06.080
- Zhao, J., Wang, Y., Luo, G. and Zhu, S. (2010) Covalent immobilization of penicillin G acylase on aminopropylfunctionalized mesostructured cellular foams. Bioresour. Technol. 101, 7211-7217. https://doi.org/10.1016/j.biortech.2010.04.067
- Lie, J., Fan, J., Yu, C., Zhang, L., Jiang, S., Tu, B. and Zhao, D. (2004) Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Micropor. Mesopor. Mater. 73, 121-128. https://doi.org/10.1016/j.micromeso.2004.05.004
- Serra, E., Mayoral, A., Sakamotob, Y., Blancoa, R. M. and Diaz, I. (2008) Immobilization of lipase in ordered mesoporous materials: effect of textural and structural parameters. Micropor. Mesopor. Mater. 114, 201-213. https://doi.org/10.1016/j.micromeso.2008.01.005
- Chouyyok, W., Panpranot, J., Thanachayanant, C. and Prichanont, S. (2009) Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. J. Mol. Catal. B: Enzym. 56, 246-252. https://doi.org/10.1016/j.molcatb.2008.05.009
- Lee, J., Na, H. B., Kim, B. C., Lee, J. H., Lee, B., Kwak, J. H., Hwang, Y., Park, J., Gu, M. G., Kim, J., Joo, J., Shin, C., Grate, J. W., Hyeon, T. and Kim, J. (2009) Magnetically-separable and highly-stable enzyme system based oncrosslinked enzyme aggregates shipped in magnetite- coated mesoporous silica. J. Mater. Chem. 19, 7864-7870. https://doi.org/10.1039/b909109b
- Lee, S. Y., Lee, S., Lee, J. H. and Chang, J. H. (Submitted) Enzyme-magnetic nanoparticle conjugates as rigid biocatalyst for the elimination of toxic aromatic hydrocarbon. Angew. Chem. Int. Ed. (in press).
- Qiu, H., Lu, L., Huang, X., Zhang, Z. and Qu, Y. (2010) Immobilization of horseradish peroxidase on nanoporous copper and its potential applications. Bioresour. Technol. 101, 9415-9420. https://doi.org/10.1016/j.biortech.2010.07.097
- Oliveira, G. B., Filho, J. L. L., Chaves, M. E. C., Azevedo, W. M. and Carvalho Jr., L. B. (2008) Enzyme immobilization on anodic aluminum oxide/polyethyleneimine or polyaniline composites. React. Func. Poly. 68, 27-32. https://doi.org/10.1016/j.reactfunctpolym.2007.10.009
- Ogata, K., Dobashi, H., Koike, K., Sasa, S., Inoue, M. and Yano, M. (2010) Patterned growth of ZnO nanorods and enzyme immobilization toward the fabrication of glucose sensors. Physica E 42, 2880-2883. https://doi.org/10.1016/j.physe.2010.04.011
- Gekas, V. C. (1986) Artificial membranes as carriers for the immobilization of biocatalysts. Enzyme. Microb. Technol. 8, 450-460. https://doi.org/10.1016/0141-0229(86)90046-3
- Prakasham, R. S., Likhar, P. R., Rajyalaxmi, K., Rao, C. S. and Sreedhar, B. (2008) Octadecanoic acid/silica particles synthesis for enzyme immobilization: characterization and evaluation of biocatalytic activity. J. Mol. Catal. B: Enzym. 55, 43-48. https://doi.org/10.1016/j.molcatb.2008.01.008
- Burkett, S. L., Sims, S. D. and Mann, S. (1996) Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun. 11, 1367-1368.
- Macquarrie, D. J. (1996) Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM. Chem. Commun. 16, 1961-1962.
- Na, W., Wei, Q., Lan, J., Nie, Z., Sun, H. and Li, Q. (2010) Effective immobilization of enzyme in glycidoxypropyl-functionalized periodic mesoporous organosilicas (PMOs). Micropor. Mesopor. Mater. 134, 72-78. https://doi.org/10.1016/j.micromeso.2010.05.009
- Lee, J., Kim, J., Jia, H., Kim, M., Kim, J., Kwak, J. H., Jin, S., Dohnalkova, A., Park, H. G., Chang, H. N., Wang, P., Grate, J. W. and Hyeon, T. (2005) Simple synthesis of hierarchically ordered mesocellular mesoporous silica materialshosting crosslinked enzyme aggregates. Small 1, 744-753. https://doi.org/10.1002/smll.200500035
- Kim, M. I., Kim, J., Lee, J., Jia, H., Na, H. B., Youn, J. K., Kwak, J. H., Dohnalkova, A., Grate, J. W., Wang, P., Hyeon, T., Park, H. G. and Chang, H. N. (2007) Crosslinked enzyme aggregates in hierarchically-ordered mesoporoussilica: a simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 96, 210-218. https://doi.org/10.1002/bit.21107
- Kim, J., Park, J. and Kim, H. (2004) Synthesis and characterization of nanoporous silica support for enzyme immobilization. Colloids. Surf. A 241, 113-117. https://doi.org/10.1016/j.colsurfa.2004.04.048
- Kim, M. I., Kim, J., Lee, J., Shin, S., Na, H. B., Hyeon, T., Park, H. G. and Chang, H. N. (2008) One-dimensional crosslinked enzyme aggregateds in SBA-15: superior catalytic behavior to conventional enzyme immobilization. Micropor. Mesopor. Mater. 111, 18-23. https://doi.org/10.1016/j.micromeso.2007.07.009
- Wang, P., Dai, S., Waezsada, S. D., Tsao, A. Y. and Davison, B. H. (2001) Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. Biotechnol. Bioeng. 74, 249-255. https://doi.org/10.1002/bit.1114
- Konwarh, R., Kalita, D., Mahanta, C., Mandal, M. and Karak, N. (2010) Magnetically recyclable, antimicrobial, and catalytically enhanced polymer-assisted "green" nanosystem-immobilized Aspergillus niger amyloglucosidase.Appl. Microbiol. Biotechnol. doi 10.1007/s00253-010-2658-4.
- Cseslik, C. and Winter, R. (2001) Effect of temperature on the conformation of lysozyme adsorbed to silica particles. Phys. Chem. Chem. Phys. 3, 235-239. https://doi.org/10.1039/b005900p
- Turner, N. J. (2003) Controlling chirality. Curr. Opin. Biotechnol. 14, 401-406. https://doi.org/10.1016/S0958-1669(03)00093-4
- Vertegel, A. A., Siegel, R. W. and Dordick, J. S. (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20, 6800-6807. https://doi.org/10.1021/la0497200
- Shang, W., Nuffer, J. H., Dordick, J. S. and Siegel, R. W. (2007) Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett. 7, 1991-1995. https://doi.org/10.1021/nl070777r
- Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M. and Fernandez-Laruente, R. (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme. Microb. Technol. 40, 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
- Jiang, Y., Guo, C., Xia, H., Mahmood, I., Liu, C. and Liu, H. (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. J. Mol. Catal. B: Enzym. 58, 103-109.
- Huang, J., Liu, Y. and Wang, X. (2009) Silanized palygorskite for lipase immobilization. J. Mol. Catal. B: Enzym. 57, 10-15. https://doi.org/10.1016/j.molcatb.2008.06.009
- Kim, J., Jia, H., Lee, C., Chung, S., Kwak, J. H., Shin, Y., Dohnalkova, A., Kim, B. -G., Wang, P. and Grate, J. W. (2006) Single enzyme nanoparticles in nanoporous silica: a hierarchical approach to enzyme stabilization and immobilization. Enzyme. Microb. Technol. 39, 474-480. https://doi.org/10.1016/j.enzmictec.2005.11.042
- Kachoosangi, R. T., Musameh, M. M., Abu-Yousef, I., Yousef, J. M., Kanan, S. M., Xiao, L., Davies, S. G., Russell, A. and Compton, R. G. (2009) Carbon nanotube-Ionic liquid composite sensors and biosensors. Anal. Chem. 81, 435-442. https://doi.org/10.1021/ac801853r
- Rantwijk, F., Secundo, F. and Sheldon, R. A. (2006) Structure and activity of Candida antarctica lipase B in ionic liquids. Green Chem. 8, 282-286. https://doi.org/10.1039/b513062j
- Dastjerdi, R. and Montazer, M. (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79, 5-18. https://doi.org/10.1016/j.colsurfb.2010.03.029
- Libertino, S., Fichera, M., Aiello, V., Statello, G., Fiorenza, P. and Sinatra, F. (2007) Experimental characterization of proteins immobilized on Si-based materials. Microelecron. Eng. 84, 468-473. https://doi.org/10.1016/j.mee.2006.10.064
- Crespilho, F. N., Ghica, M. E., Florescu, M., Nart, F. C., Oliveira Jr, O. N. and Brett, C. M. A. (2006) A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem. Commun. 8, 1665-1670. https://doi.org/10.1016/j.elecom.2006.07.032
- Delvaux, M. and Demoustier-Champagne, S. (2003) Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosens. Bioelectron. 18, 943-951. https://doi.org/10.1016/S0956-5663(02)00209-9
- Knopp, D., Tang, D. and Niessner, R. (2009) Bioanalytical applications of biomolecule-functionalized nanometersized doped silica particles. Anal. Chim. Acta. 647, 14-30. https://doi.org/10.1016/j.aca.2009.05.037
- Ren, X., Chen, D., Meng, X., Tang, F., Du, A. and Zhang, L. (2009) Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilized matrix. Colloids Surf. B 72, 188-192. https://doi.org/10.1016/j.colsurfb.2009.04.003
- Bentancor, L. and Luckarift, H. R. (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 26, 566-572. https://doi.org/10.1016/j.tibtech.2008.06.009
- Lei, C., Shin, Y., Liu, J. and Ackerman, E. J. (2002) Entrapping enzyme in a functionalized nanoporous support. J. Am. Chem. Soc. 124, 11242-11243. https://doi.org/10.1021/ja026855o
- Dwevedi, A., Singh, A. K., Singh, D. P., Srivastava, O. N. and Kayastha, A. M. (2009) Lactose nano-probe optimized using response surface methodology. Biosens. Bioelectron. 25, 784-790. https://doi.org/10.1016/j.bios.2009.08.029
-
Bai, Y. -X., Li, Y. -F., Yang, Y. and Yi, L. -X. (2006) Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale
$SiO_2$ spheres. Process Biochem. 41, 770-777. https://doi.org/10.1016/j.procbio.2005.09.012 - Zhai, R., Zhang, B., Liu, L., Xie, Y., Zhang, H. and Liu, J. (2010) Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catal. Commun. 12, 259-263. https://doi.org/10.1016/j.catcom.2010.09.030
- Benjamin, S. and Pandey, A. (1998) Candida rugosa lipase: molecular biology and versatility in biotechnology. Yeast 14, 1069-1087. https://doi.org/10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.0.CO;2-K
- Yusdy, P. S. R., Yap, M. G. S. and Wang, D. I. C. (2009) Immobilization of l-lactate dehydrogenase on magnetic nanoclusters for chiral synthesis of pharmaceutical compounds. Biochem. Eng. J. 48, 13-21. https://doi.org/10.1016/j.bej.2009.07.017
- Chong, A. S. M. and Zhao, X. S. (2004) Functionalized nanoporous silicas for the immobilization of penicillin acylase. Appl. Surf. Sci. 237, 398-404. https://doi.org/10.1016/j.apsusc.2004.06.080
- Xiao, Q. -G., Tao, X., Zhang, J. -P. and Chen, J. -F. (2006) Hollow silica nanotubes for immobilization of penicillin G acylase enzyme. J. Mol. Catal .B: Enzym. 42, 14-19. https://doi.org/10.1016/j.molcatb.2006.05.011
- Yuan, J. S., Tiller, K. H., Al-Ahmad, H., Stewart, N. R. and Stewart Jr, C. N. (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13, 421-429. https://doi.org/10.1016/j.tplants.2008.06.001
- Huang, J., Liu, C., Xiao, H., Wang, J., Jiang, D. and Gu, E. (2007) Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization. Int. J. Nanomedicine 2, 775-784.
- Bugg, T. D. H., Ahmad, M., Hardiman, E. M. and Singh, R. (2010) The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 1-7. https://doi.org/10.1016/j.ceb.2010.01.003
Cited by
- Molecular Orientation of Enzymes Attached to Surfaces through Defined Chemical Linkages at the Solid–Liquid Interface vol.135, pp.34, 2013, https://doi.org/10.1021/ja403672s
- Molecular-Level Insights into Orientation-Dependent Changes in the Thermal Stability of Enzymes Covalently Immobilized on Surfaces vol.31, pp.22, 2015, https://doi.org/10.1021/acs.langmuir.5b01735
- Polysaccharide-layered double hydroxide–aldolase biohybrid beads for biocatalysed CC bond formation vol.122, 2015, https://doi.org/10.1016/j.molcatb.2015.07.014
- Preparation of Polyphosphazene Hydrogels for Enzyme Immobilization vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19079850
- Synthesis and characterization of glucose oxidase–core/shell magnetic nanoparticle complexes into chitosan bead vol.81, 2012, https://doi.org/10.1016/j.molcatb.2012.05.004
- Amino acid side chain-like surface modification on magnetic nanoparticles for highly efficient separation of mixed proteins vol.93, 2012, https://doi.org/10.1016/j.talanta.2012.02.003
- Enzymes immobilized in mesoporous silica: A physical–chemical perspective vol.205, 2014, https://doi.org/10.1016/j.cis.2013.08.010
- Surface Modification of Halloysite Nanotubes with Dopamine for Enzyme Immobilization vol.5, pp.21, 2013, https://doi.org/10.1021/am4022973
- Enzyme–magnetic nanoparticle conjugates as a rigid biocatalyst for the elimination of toxic aromatic hydrocarbons vol.47, pp.36, 2011, https://doi.org/10.1039/c1cc11664a
- Functionalized Graphene Oxide in Enzyme Engineering: A Selective Modulator for Enzyme Activity and Thermostability vol.6, pp.6, 2012, https://doi.org/10.1021/nn300217z
- Utilization of a biphasic oil/aqueous cellulose nanofiber membrane bioreactor with immobilized lipase for continuous hydrolysis of olive oil vol.21, pp.1, 2014, https://doi.org/10.1007/s10570-013-0148-4
- Electrochemical deposition to construct a nature inspired multilayer chitosan/layered double hydroxides hybrid gel for stimuli responsive release of protein vol.3, pp.38, 2015, https://doi.org/10.1039/C5TB01056J
- Highly ordered magnetic mesoporous silicas for effective elimination of carbon monoxide vol.188, 2012, https://doi.org/10.1016/j.jssc.2012.01.050
- QCM-D as a method for monitoring enzyme immobilization in mesoporous silica particles vol.176, 2013, https://doi.org/10.1016/j.micromeso.2013.04.001
- Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles vol.7, pp.1, 2012, https://doi.org/10.1186/1556-276X-7-279
- Carbohydrate Ligands on Magnetic Nanoparticles for Centrifuge-Free Extraction of Pathogenic Contaminants in Pasteurized Milk vol.81, pp.12, 2018, https://doi.org/10.4315/0362-028X.JFP-18-040
- Emerging role of nanobiocatalysts in hydrolysis of lignocellulosic biomass leading to sustainable bioethanol production pp.1520-5703, 2019, https://doi.org/10.1080/01614940.2018.1479503