Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.8.2613

Ni(OH)2 and NiO Nanostructures: Synthesis, Characterization and Electrochemical Performance  

Saghatforoush, Lotf Ali (Department of Chemistry, Payam Noor University)
Hasanzadeh, Mohammad (Drug Applied Research Center, Tabriz University of Medical Sciences)
Sanati, Soheila (Department of Chemistry, Payam Noor University)
Mehdizadeh, Robabeh (Department of Chemistry, Payam Noor University)
Publication Information
Abstract
Hydrothermal route have been used in different conditions for preparation of $Ni(OH)_2$ nanostructures. The NiO nanoparticles were obtained by calcining the $Ni(OH)_2$ precursor at $450^{\circ}C$ for 2 h. The effect of sodium dodecyl sulfonate (SDS) as surfactant on the morphology and size of $Ni(OH)_2$ nanoparticles were discussed in detail. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the products. The growth mechanism of the as-synthesized nanostructures was also discussed in detail based on the experimental results. Coming up, the NiO nanoparticle modified carbon paste electrode was applied to the determination of captopril in aqueous solution.
Keywords
$Ni(OH)_2$; NiO; Hydrothermal synthesis; Sodium dodecyl sulfonate; Captopril;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.   DOI   ScienceOn
2 Ni, X. M.; Zhao, Q. B.; Zhou, F.; Zheng, H. G.; Cheng, J.; Li, B. B. J. Cryst. Growth 2006, 289-299, 33.
3 Wu, Z. Y.; Liu, C. M.; Guo, L.; Hu, R.; Abbas, M. I.; Hu, T. D.; Xu, H. B. J. Phys. Chem. B 2005, 109, 2512.   DOI
4 Malandrino, G.; Perdicaro, L. M. S.; Fragala, I. L.; NigroR, L.; Losurdo, M.; Bruno, G. J. Phys. Chem. C 2007, 111, 3211.   DOI
5 Sun, X. M.; Liu, J. F.; Li, Y. D. Chem. Eur. J. 2006, 12, 2039.   DOI   ScienceOn
6 Masaaki, T.; Toshihiro, M.; Kousuke, K.; Ying, G. W. Inorg. Chim. Acta 2005, 358, 1823.   DOI
7 Oliva, P.; Leonardi, J.; Laurent, J. F.; Delmas, C.; Braconnier, J. J.; Figlarz, M.; Fievet, F.; de Guibert, A. J. Power Sources 1982, 8, 229.   DOI
8 Salavati-Niasari, M.; Mohandes, F.; Davar, F.; Mazaheri, M.; Monemzadeh, M.; Yavarinia, N. Inorg. Chim. Acta 2009, 362, 3691.   DOI
9 Yang, D.; Wang, R.; He, M.; Zhang, J.; Liu, Z. J. Phys. Chem. B 2005, 109, 7654.   DOI
10 Sumit, B.; Ashwin, S.; Aruna, D.; Rao, P. M. Langmuir 2003, 19, 5522.   DOI
11 Wang, W.; Liu, Y.; Xu, C.; Zheng, C.; Wang, G. Chem. Phys. Lett. 2002, 362, 119.   DOI
12 Liang, Z. H.; Zhu, Y. J.; Hu, X. L. J. Phys. Chem. B 2004, 108, 3488.   DOI   ScienceOn
13 Wang, D. B.; Song, C. X.; Hu, Z. S.; Fu, X. J. J. Phys. Chem. B 2005, 109, 1125.
14 CaiF, S.; Zhang, G. Y.; Chen, J.; Gou, X. L.; Liu, H. K.; Dou, S. X. Angew Chem. Int. Ed. 2004, 43, 4212.   DOI
15 Yang, L. X.; Zhu, Y. J.; Tong, H.; Liang, Z. H.; Wang, W. W. Cryst Growth Des. 2007, 7, 2716.   DOI
16 Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D. Nanotech. 2006, 17, 979.   DOI   ScienceOn
17 Tost, R. M.; Gonzalez, J. S.; Torres, P. M.; Castellon, E. R.; Lopez, A. J. J. Mater. Chem. 2002, 12, 3331.   DOI
18 Boschloo, G.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 3039.
19 Mattei, G.; Mazzoldi, P.; Post, M. L.; Buso, D.; Guglielmi, M.; Martucci, A. Adv. Mater. 2007, 19, 561.   DOI
20 Dirksen, J. A.; Duval, K.; Ring, T. A. Sens Actuators B 2001, 80, 106.   DOI
21 Yoshio, M.; Todorov, Y.; Yamato, K.; Noguchi, H.; Itoh, J.; Okada, M.; Mouri, T. J. J. Power Sources 1998, 74, 46.   DOI
22 Karlsson, J.; Roos, A. Sol Energy 2000, 68, 493.   DOI
23 Fantini, M. C. A.; Ferreira, F. F.; Gorenstein, A. Solid State Ionics 2002, 152-153, 867.   DOI
24 Wang, X.; Li, L.; Zhang, Y. G.; Wang, S. T.; Zhang, Z. D.; Fei, L. F.; Qian, Y. T. Cryst Growth Des. 2006, 6, 2163.   DOI
25 Zhong, Z. Y.; Gates, Y. D.; Xia, B. Y. Adv. Mater 2000, 12, 206.   DOI
26 Mamak, M.; Coombs, N.; Ozin, G. A. Chem. Mater. 2001, 13, 3564.   DOI
27 Li, Z. Q.; Ding, Y.; Xiong, Y. J.; Yang, Q.; Xie, Y. Chem. Commun. 2005, 7, 918.
28 Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Science 2002, 298, 1006.   DOI
29 Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652.   DOI   ScienceOn
30 Klimov, V.; Annu, I. Rev. Phys. Chem. 2007, 58, 635.   DOI
31 Li, L.; Hu, J.; Yang, W.; Alivisatos, A. P. Nano Lett. 2001, 1, 349.   DOI   ScienceOn
32 Kovtyuklhov, N. I.; Mallouk, T. E. Chem. Eur. 2002, J8, 4354.
33 Zhu, J. X.; Gui, Z.; Ding, Y. Y.; Wang, Z. Z.; Hu, Y.; Zou, M. Q. J. Phys. Chem. 2007, C111, 5622.
34 Han, D. Y.; Yang, H. Y.; Shen, C. B.; Zhou, X.; Wang, F. H. Powder Technol. 2004, 147, 113.   DOI
35 Lenggoro, I. W.; Yoshifumi, I.; Noritaka, I.; Kikuo, O. Mater. Res. Bull. 2003, 38, 1819.   DOI   ScienceOn
36 Zhao, B.; Bao, J. H.; Chen, H. L. Chin. J. Inorg. Chem. 2006, 56, 17.
37 Haruta, M. Catal. Today 1997, 36, 153.   DOI   ScienceOn
38 Liang, J. H.; Li, Y. D. Chem. Lett. 2003, 32, 1126.   DOI
39 Liu, H. J.; Peng, T. Y.; Zhao, D. E.; Dai, K.; Peng, Z. H. Mater. Chem. Phys. 2004, 87, 81.   DOI
40 Yang, O.; Sha, J.; Ma, X. Y.; Yang, D. R. Mater. Lett. 1967, 59, 2005.