DOI QR코드

DOI QR Code

Study on the Preparation of TiO2 3D Nanostructure for Photocatalyst by Wet Chemical Process

습식화학공정에 의한 광촉매용 TiO2 3차원 나노구조체 제조 연구

  • Lee, Duk-Hee (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Park, Jae-Ryang (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Lee, Chan-Gi (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Park, Kyoung-Tae (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Park, Kyung-Soo (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering)
  • 이덕희 (고등기술연구원 융합소재연구센터) ;
  • 박재량 (고등기술연구원 융합소재연구센터) ;
  • 이찬기 (고등기술연구원 융합소재연구센터) ;
  • 박경태 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 박경수 (고등기술연구원 융합소재연구센터)
  • Received : 2020.09.01
  • Accepted : 2020.09.14
  • Published : 2020.10.28

Abstract

In this work, TiO2 3D nanostructures (TF30) were prepared via a facile wet chemical process using ammonium hexafluorotitanate. The synthesized 3D TiO2 nanostructures exhibited well-defined crystalline and hierarchical structures assembled from TiO2 nanorods with different thicknesses and diameters, which comprised numerous small beads. Moreover, the maximum specific surface area of TiO2 3D nanostructures was observed to be 191 ㎡g-1, with concentration of F ions on the surface being 2 at%. The TiO2 3D nanostructures were tested as photocatalysts under UV irradiation using Rhodamine B solution in order to determine their photocatalytic performance. The TiO2 3D nanostructures showed a higher photocatalytic activity than that of the other TiO2 samples, which was likely associated with the combined effects of a high crystallinity, unique features of the hierarchical structure, a high specific surface area, and the advantage of adsorbing F ions.

Keywords

References

  1. S. Y. Lee and S. J. Park: J. Ind. Eng. Chem., 19 (2013) 1761. https://doi.org/10.1016/j.jiec.2013.07.012
  2. M. N. Chong, B. Jin, C. W. K. Chow and C. Saint: Water Res., 44 (2010) 2997. https://doi.org/10.1016/j.watres.2010.02.039
  3. M. Rawolle, M. A. Ruderer, S. M. Prams, Q. Zhong, D. Magerl, J. Perlich, S.V. Roth, P. Lellig, J. S. Gutmann and P. Muller-Buschbaum: Small, 7 (2011) 884. https://doi.org/10.1002/smll.201001734
  4. H. Y. Yin, X. L. Wang, L. Wang, Q. L. N and H. T. Zhao: J. Alloys Compd., 640 (2015) 68. https://doi.org/10.1016/j.jallcom.2015.03.216
  5. W. Q. Fang, J. Z. Zhou, J. Liu, Z. G. Chen, C. Yang, C. H. Sun, G. R. Qian, J. Zou, S. Z. Qiao and H. G. Yang: Chem. Eur. J, 17 (2011) 1423. https://doi.org/10.1002/chem.201002582
  6. X. F. Yang, H. Y. Cui, Y. Li, J. L. Qin, R. X. Zhang and H. Tang: ACS Catal., 3 (2013) 363. https://doi.org/10.1021/cs3008126
  7. X. F. Guan, L. P. Li, G. S. Li, Z. W. Fu, J. Zheng and T. J. Yan: J. Alloys Compd., 509 (2011) 3367. https://doi.org/10.1016/j.jallcom.2010.12.067
  8. Y. F. Tang, L. Yang, J. Z. Chen and Z. Qiu: Langmuir, 26 (2010) 10111. https://doi.org/10.1021/la1002379
  9. C. X. Wang, L. W. Yin, L. Y. Zhang, Y. X. Qi, N. Lun and N. N. Liu: Langmuir, 26 (2010) 12841. https://doi.org/10.1021/la100910u
  10. J. Zhu, S. H. Wang, Z. F. Bian, C. L. Cai and H. X. Li: Res. Chem. Intermed., 35 (2009) 769. https://doi.org/10.1007/s11164-009-0096-7
  11. J. Zhu, S. H. Wang, J. G. Wang, D. Q. Zhang and H. X. Li: Appl. Catal. B. Environ., 102 (2011) 120. https://doi.org/10.1016/j.apcatb.2010.11.032
  12. X. J. Lu, F. Q. Huang, X. L. Mou, Y. M. Wang and F. F. Xu: Adv. Mater., 22 (2010) 3719. https://doi.org/10.1002/adma.201001008
  13. D. C. Pan, N. N. Zhao, Q. Wang, S. C. Jiang and L. J. An: Adv. Mater., 17 (2005) 1991. https://doi.org/10.1002/adma.200500479
  14. J. M. Macak, H. Tsuchiya and P. Schmuki: Angew. Chem. Int. Ed., 44 (2005) 2100. https://doi.org/10.1002/anie.200462459
  15. G. Wu, J. Wang, D. F. Thomas and A. Chen: Langmuir, 24 (2008) 3503. https://doi.org/10.1021/la703098g
  16. T. Zhu, J. Li and Q. Wu: ACS Appl. Mater. Interface, 3 (2011) 3448. https://doi.org/10.1021/am2006838
  17. G. Tian, T. Chen, W. Zhou, K. Pan, C. Tian, X. Huang and H. Fu: Cryst. Eng. Comm., 13 (2011) 2994. https://doi.org/10.1039/c0ce00851f
  18. H. Li, T. Li, H. Liu, B. Huang and Q. Zhang: J. Alloys Compd., 657 (2016) 1. https://doi.org/10.1016/j.jallcom.2015.09.257
  19. Z. Wu, Q. Wu, L. Du, C. Jiang and L. Piao: Particuology, 15 (2014) 61. https://doi.org/10.1016/j.partic.2013.04.003
  20. H. Park and W. Choi: J. Phys. Chem. B, 108 (2004) 4086. https://doi.org/10.1021/jp036735i
  21. W. Gan, H. Niu, X. Shang, R. Zhou, Z. Guo, X. Mao, L. Wan, J. Xu and S. Miao: Phys. Status Solidi A, 213 (2016) 994. https://doi.org/10.1002/pssa.201532461
  22. Y. Fan, G. Chen, D. Li, Y. Luo, N. Lock, A. P. Jensen, A. Manakhel, J. Mi, S. B. Iversen, Q. Meng and B. B. Iversen: Inter. J. Photoenergy, 2012 (2011) 1.
  23. S. S. Ma, J. J. Xue, Y. M. Zhou and Z. W. Zhang: J. Mater. Chem. A, 2 (2014) 7272. https://doi.org/10.1039/C4TA00464G
  24. J. G. Yu, Y. R. Su and B. Cheng: Adv. Funct. Mater., 17 (2007) 1984. https://doi.org/10.1002/adfm.200600933
  25. H. Li, T. Li, H. Liu, B. Huang and Q. Zhang: J. Alloys Compd., 657 (2016) 1. https://doi.org/10.1016/j.jallcom.2015.09.257
  26. M. A. Lara, M. J. Sayagues, J. A. Navio and M. C. Hidalgo: J. Mater. Sci., 53 (2018) 435. https://doi.org/10.1007/s10853-017-1515-6