Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.2.77

Inorganic nanomaterial-based biocatalysts  

Lee, Soo-Youn (Korea Institute of Ceramic Engineering & Technology (KICET))
Lee, Ji-Ho (Korea Institute of Ceramic Engineering & Technology (KICET))
Chang, Jeong-Ho (Korea Institute of Ceramic Engineering & Technology (KICET))
Lee, Jin-Hyung (Korea Institute of Ceramic Engineering & Technology (KICET))
Publication Information
BMB Reports / v.44, no.2, 2011 , pp. 77-86 More about this Journal
Abstract
Over the years, nanostructures have been developed to enable to support enzyme usability to obtain highly selective and efficient biocatalysts for catalyzing processes under various conditions. This review summarizes recent developments in the nanostructures for enzyme supporters, typically those formed with various inorganic materials. To improve enzyme attachment, the surface of nanomaterials is properly modified to express specific functional groups. Various materials and nanostructures can be applied to improve both enzyme activity and stability. The merits of the incorporation of enzymes in inorganic nanomaterials and unprecedented opportunities for enhanced enzyme properties are discussed. Finally, the limitations encountered with nanomaterial-based enzyme immobilization are discussed together with the future prospects of such systems.
Keywords
Biocatalyst; Enzyme immobilization; Immobilizing support; Nanomaterial; Silica nanoparticle;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Vertegel, A. A., Siegel, R. W. and Dordick, J. S. (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20, 6800-6807.   DOI
2 Shang, W., Nuffer, J. H., Dordick, J. S. and Siegel, R. W. (2007) Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett. 7, 1991-1995.   DOI   ScienceOn
3 Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M. and Fernandez-Laruente, R. (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme. Microb. Technol. 40, 1451-1463.   DOI   ScienceOn
4 Ogata, K., Dobashi, H., Koike, K., Sasa, S., Inoue, M. and Yano, M. (2010) Patterned growth of ZnO nanorods and enzyme immobilization toward the fabrication of glucose sensors. Physica E 42, 2880-2883.   DOI   ScienceOn
5 Gekas, V. C. (1986) Artificial membranes as carriers for the immobilization of biocatalysts. Enzyme. Microb. Technol. 8, 450-460.   DOI   ScienceOn
6 Prakasham, R. S., Likhar, P. R., Rajyalaxmi, K., Rao, C. S. and Sreedhar, B. (2008) Octadecanoic acid/silica particles synthesis for enzyme immobilization: characterization and evaluation of biocatalytic activity. J. Mol. Catal. B: Enzym. 55, 43-48.   DOI   ScienceOn
7 Burkett, S. L., Sims, S. D. and Mann, S. (1996) Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun. 11, 1367-1368.
8 Macquarrie, D. J. (1996) Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM. Chem. Commun. 16, 1961-1962.
9 Na, W., Wei, Q., Lan, J., Nie, Z., Sun, H. and Li, Q. (2010) Effective immobilization of enzyme in glycidoxypropyl-functionalized periodic mesoporous organosilicas (PMOs). Micropor. Mesopor. Mater. 134, 72-78.   DOI   ScienceOn
10 Lee, J., Kim, J., Jia, H., Kim, M., Kim, J., Kwak, J. H., Jin, S., Dohnalkova, A., Park, H. G., Chang, H. N., Wang, P., Grate, J. W. and Hyeon, T. (2005) Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. Small 1, 744-753.   DOI   ScienceOn
11 Kim, M. I., Kim, J., Lee, J., Jia, H., Na, H. B., Youn, J. K., Kwak, J. H., Dohnalkova, A., Grate, J. W., Wang, P., Hyeon, T., Park, H. G. and Chang, H. N. (2007) Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: a simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 96, 210-218.   DOI   ScienceOn
12 Zhao, J., Wang, Y., Luo, G. and Zhu, S. (2010) Covalent immobilization of penicillin G acylase on aminopropylfunctionalized mesostructured cellular foams. Bioresour. Technol. 101, 7211-7217.   DOI   ScienceOn
13 Lie, J., Fan, J., Yu, C., Zhang, L., Jiang, S., Tu, B. and Zhao, D. (2004) Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Micropor. Mesopor. Mater. 73, 121-128.   DOI   ScienceOn
14 Serra, E., Mayoral, A., Sakamotob, Y., Blancoa, R. M. and Diaz, I. (2008) Immobilization of lipase in ordered mesoporous materials: effect of textural and structural parameters. Micropor. Mesopor. Mater. 114, 201-213.   DOI   ScienceOn
15 Chouyyok, W., Panpranot, J., Thanachayanant, C. and Prichanont, S. (2009) Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. J. Mol. Catal. B: Enzym. 56, 246-252.   DOI   ScienceOn
16 Lee, J., Na, H. B., Kim, B. C., Lee, J. H., Lee, B., Kwak, J. H., Hwang, Y., Park, J., Gu, M. G., Kim, J., Joo, J., Shin, C., Grate, J. W., Hyeon, T. and Kim, J. (2009) Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite- coated mesoporous silica. J. Mater. Chem. 19, 7864-7870.   DOI   ScienceOn
17 Zeng, L., Luo, K. and Gong, Y. (2006) Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. J. Mol. Catal. B: Enzym. 38, 24-30.   DOI   ScienceOn
18 Lee, S. Y., Lee, S., Lee, J. H. and Chang, J. H. (Submitted) Enzyme-magnetic nanoparticle conjugates as rigid biocatalyst for the elimination of toxic aromatic hydrocarbon. Angew. Chem. Int. Ed. (in press).
19 Qiu, H., Lu, L., Huang, X., Zhang, Z. and Qu, Y. (2010) Immobilization of horseradish peroxidase on nanoporous copper and its potential applications. Bioresour. Technol. 101, 9415-9420.   DOI   ScienceOn
20 Oliveira, G. B., Filho, J. L. L., Chaves, M. E. C., Azevedo, W. M. and Carvalho Jr., L. B. (2008) Enzyme immobilization on anodic aluminum oxide/polyethyleneimine or polyaniline composites. React. Func. Poly. 68, 27-32.   DOI   ScienceOn
21 Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S. (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710-712.   DOI
22 Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H. and Sheppard, E. W. (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834-10843.   DOI
23 Kim, J., Grate, J. W. and Wang, P. (2006) Nanostructures for Enzyme Stabilization. Chem. Eng. Sci. 61, 1017-1026.   DOI   ScienceOn
24 Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F. and Stucky, G. D. (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548-552.   DOI   ScienceOn
25 Maria Chong, A. S. and Zhao, X. S. (2004) Functionalized nanoporous silicas for the immobilization of penicillin acylase. Appl. Surf. Sci. 237, 398-404.   DOI   ScienceOn
26 Schmidt-Winkel, P., Lukens, W. W., Zhao, D. Y., Yang, P. D., Chmelka, B. F. and Stucky, G. D. (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc. 121, 254-255.   DOI   ScienceOn
27 Shimomura, T., Itoh, T., Sumiya, T., Mizukami, F. and Ono, M. (2008) Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuators B 135, 268-275.   DOI   ScienceOn
28 Santalla, E., Serra, E., Mayoral, A., Losada, J., Blanco, R. M. and Diaza, I. (2010) In-situ immobilization of enzymes in mesoporous silicas. Solid. State. Sci. doi:10.1016/j.solidstatesciences.2010.09.015.   DOI   ScienceOn
29 Jia, H., Zhu, G. and Wang, P. (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol. Bioeng. 84, 406-414.   DOI   ScienceOn
30 Sarah, H., Jakki, C. and Edmond, M. (2008) Proteins in mesoporous silicates. Angew. Chem. Int. Ed. 47, 8582-8594.   DOI   ScienceOn
31 Wang, L., Wei, L., Chen, Y. and Jiang, R. (2010) Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. J. Biotechnol. 150, 57-63.
32 Lee, J. Y., Shin, H. Y., Kang, S. W., Park, C. and Kim, S. W. (2010) Improvement of electrical properties via glucose oxidase-immobilization by actively turning over glucose for an enzyme-based biofuel cell modified with DNA-wrapped single walled nanotubes. Biosens. Bioelectron. doi: 10.1016/j.bios.2010.07.020.   DOI   ScienceOn
33 Wang, S. G., Zhang, Q., Wang, R., Yoon, S. F., Ahn, J., Yang, D. J., Tian, J. Z., Li, J. Q. and Zhou, Q. (2003) Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochem. Commun. 5, 800-803.   DOI   ScienceOn
34 Bayramoglu, G., Kiralp, S., Yilmaz, M., Toppare, L. and Arica, M. Y. (2008) Covalent immobilization of chloroperoxidase onto magnetic beads: catalytic properties and stability. Biochem. Eng. J. 38, 180-188.   DOI   ScienceOn
35 Lee, K., Komathi, S., Nam, N. J. and Gopalan, A. L. (2010) Sulfonated polyaniline network grafted multi-wall carbon nanotubes for enzyme immobilization, direct electrochemistry and biosensing of glucose. Microchem. J. 95, 74-79.   DOI   ScienceOn
36 Ebrahimi, B., Shojaosadati, S. A., Ranaie, S. O. and Mousavi, S. M. (2010) Optimization and evaluation of acetylcholine esterase immobilization on ceramic packing using response surface methodology. Process. Biochem. 45, 81-87.   DOI   ScienceOn
37 Lee, D., Ponvel, K. M., Kim, M., Hwang, S., Ahn, I. and Lee, C. (2009) Immobilization of lipase on hydrophobic nano-sized magnetite particles. J. Mol. Catal. B: Enzym. 57, 62-66.   DOI   ScienceOn
38 Wu, C. -S., Wu, C. -T., Yang, Y. -S. and Ko, F. -H. (2008) An enzymatic kinetics investigation into the significantly enhanced activity of functionalized gold nanoparticles. Chem. Commun. 42, 5327-5329.
39 Szamocki, R., Velichko, A., Mucklich, F., Reculusa, S., Ravaine, S., Neugebauer, S., Schuhmann, W., Hempelmann, R. and Kuhn, A. (2007) Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes. Electrochem. Commun. 9, 2121-2127.   DOI   ScienceOn
40 Qiu, H., Li, Y., Ji, G., Zhou, G., Huang, X., Qu, Y. and Gao, P. (2009) Immobilization of lignin peroxidase on nanoporous gold: enzymatic properties and in situ release of $H_2O_2$ by co-immobilized glucose oxidase. Bioresour. Technol. 100, 3837-3842.   DOI   ScienceOn
41 Zhang, M., Smith, A. and Gorski, W. (2004) Coimmobilization of dehydrogenase and their cofactors in electrochemical biosensors. Anal. Chem. 76, 5045-5050.   DOI   ScienceOn
42 Chico, B., Camacho, C., Perez, M., Longo, M., Sanroman, M. A., Pingarron, J. M. and Villalonga, R. (2009) Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. J. Electroanal. Chem. 629, 126-132.   DOI   ScienceOn
43 Zhang, Y., Zhang, Y., Wang, H., Yan, B., Shen, G. and Yu, R. (2009) An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. J. Electroanal. Chem. 627, 9-14.   DOI   ScienceOn
44 Chen, J., Du, D., Yan, F., Ju, H. X. and Lian, H. Z. (2005) Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon-nanotube-modified electrode. Chem. Eur. J. 11, 1467-1472.   DOI   ScienceOn
45 Gooding, J. J., Wibowo, R., Liu, J., Yang, W., Losic, D., Orbons, S., Mearns, F. J., Shapter, J. G. and Hibbert, D. B. (2003) Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125, 9006-9007.   DOI   ScienceOn
46 Morana, A., Mangione, A., Maurelli, L., Fiume, I., Paris, O., Cannio, R. and Rossi, M. (2006) Immobilization and characterization of a thermostable beta-xylosidase to generate a reusable biocatalyst. Enzyme. Microb. Technol. 39, 1205-1213.   DOI   ScienceOn
47 Tardioli, P. W., Zanin, G. M. and de Moraes, F. F. (2006) Characterization of Thermoanaerobacter cyclomaltodextrin glucanotransferase immobilized on glyoxyl-agarose. Enzyme. Microb. Technol. 39, 1270-1278.   DOI   ScienceOn
48 Love. J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. and Whitesides, G. M. (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103-1169.   DOI   ScienceOn
49 Laszlo, J. A. and Evans, K. O. (2007) Influence of self-assembled monolayer surface chemistry on Candida Antarctica lipase B adsorption and specific activity. J. Mol. Catal. B: Enzym. 48, 84-89.   DOI   ScienceOn
50 Morf, P., Raimondi, F., Nothofer, H. -G., Schnyder, B., Yasuda, A., Wessels, J. M. and Jung, T. A. (2006) Dithioccarbamates: functional and versatitle linkers for the formation of self-assembled monolayers. Langmuir 22, 658-663.   DOI   ScienceOn
51 Mazur, M., Krysinski, P., Michota-Kaminska, A. Bukowska, J., Rogalski, J. and Blanchard, G. J. (2007) Immobilization of laccase on gold, silver and indium tin oxide by zirconium-phosphonate-carboxylate (ZPC) coordination chemistry. Bioelectrochemistry 71, 15-22.   DOI   ScienceOn
52 Reis, P., Holmberg, K., Debeche, T., Folmer, B., Fauconnot, L. and Watzke, H. (2006) Lipase-Catalyzed Reactions at Different Surfaces. Langmuir 22, 8169-8177.   DOI   ScienceOn
53 Rusmini, F., Zhong, Z. and Feijen, J. (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8, 1775-1789.   DOI   ScienceOn
54 Villalonga, R., Cao, R. and Fragoso, A. (2007) Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 107, 3088-3116.   DOI   ScienceOn
55 Knopp, D., Tang, D. and Niessner, R. (2009) Bioanalytical applications of biomolecule-functionalized nanometersized doped silica particles. Anal. Chim. Acta. 647, 14-30.   DOI   ScienceOn
56 Fernandez-Lorente, G., Palomo, J. M., Mateo, C., Munilla, R., Ortiz, C., Cabrera, Z., Guisan, J. M. and Fernandez- Lafuente, R. (2006) Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Biomacromolecules 7, 2610-2615.   DOI   ScienceOn
57 Xiao, Q. -G., Tao, X., Zhang, J. -P. and Chen, J. -F. (2006) Hollow silica nanotubes for immobilization of penicillin G acylase enzyme. J. Mol. Catal .B: Enzym. 42, 14-19.   DOI   ScienceOn
58 Yuan, J. S., Tiller, K. H., Al-Ahmad, H., Stewart, N. R. and Stewart Jr, C. N. (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13, 421-429.   DOI   ScienceOn
59 Huang, J., Liu, C., Xiao, H., Wang, J., Jiang, D. and Gu, E. (2007) Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization. Int. J. Nanomedicine 2, 775-784.
60 Bugg, T. D. H., Ahmad, M., Hardiman, E. M. and Singh, R. (2010) The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 1-7.   DOI   ScienceOn
61 Ren, X., Chen, D., Meng, X., Tang, F., Du, A. and Zhang, L. (2009) Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilized matrix. Colloids Surf. B 72, 188-192.   DOI   ScienceOn
62 Bentancor, L. and Luckarift, H. R. (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 26, 566-572.   DOI   ScienceOn
63 Lei, C., Shin, Y., Liu, J. and Ackerman, E. J. (2002) Entrapping enzyme in a functionalized nanoporous support. J. Am. Chem. Soc. 124, 11242-11243.   DOI   ScienceOn
64 Dwevedi, A., Singh, A. K., Singh, D. P., Srivastava, O. N. and Kayastha, A. M. (2009) Lactose nano-probe optimized using response surface methodology. Biosens. Bioelectron. 25, 784-790.   DOI   ScienceOn
65 Bai, Y. -X., Li, Y. -F., Yang, Y. and Yi, L. -X. (2006) Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale $SiO_2$ spheres. Process Biochem. 41, 770-777.   DOI   ScienceOn
66 Zhai, R., Zhang, B., Liu, L., Xie, Y., Zhang, H. and Liu, J. (2010) Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catal. Commun. 12, 259-263.   DOI   ScienceOn
67 Benjamin, S. and Pandey, A. (1998) Candida rugosa lipase: molecular biology and versatility in biotechnology. Yeast 14, 1069-1087.   DOI   ScienceOn
68 Yusdy, P. S. R., Yap, M. G. S. and Wang, D. I. C. (2009) Immobilization of l-lactate dehydrogenase on magnetic nanoclusters for chiral synthesis of pharmaceutical compounds. Biochem. Eng. J. 48, 13-21.   DOI   ScienceOn
69 Jiang, Y., Guo, C., Xia, H., Mahmood, I., Liu, C. and Liu, H. (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. J. Mol. Catal. B: Enzym. 58, 103-109.
70 Chong, A. S. M. and Zhao, X. S. (2004) Functionalized nanoporous silicas for the immobilization of penicillin acylase. Appl. Surf. Sci. 237, 398-404.   DOI   ScienceOn
71 Huang, J., Liu, Y. and Wang, X. (2009) Silanized palygorskite for lipase immobilization. J. Mol. Catal. B: Enzym. 57, 10-15.   DOI   ScienceOn
72 Kim, J., Jia, H., Lee, C., Chung, S., Kwak, J. H., Shin, Y., Dohnalkova, A., Kim, B. -G., Wang, P. and Grate, J. W. (2006) Single enzyme nanoparticles in nanoporous silica: a hierarchical approach to enzyme stabilization and immobilization. Enzyme. Microb. Technol. 39, 474-480.   DOI   ScienceOn
73 Kachoosangi, R. T., Musameh, M. M., Abu-Yousef, I., Yousef, J. M., Kanan, S. M., Xiao, L., Davies, S. G., Russell, A. and Compton, R. G. (2009) Carbon nanotube-Ionic liquid composite sensors and biosensors. Anal. Chem. 81, 435-442.   DOI   ScienceOn
74 Rantwijk, F., Secundo, F. and Sheldon, R. A. (2006) Structure and activity of Candida antarctica lipase B in ionic liquids. Green Chem. 8, 282-286.   DOI   ScienceOn
75 Dastjerdi, R. and Montazer, M. (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79, 5-18.   DOI   ScienceOn
76 Libertino, S., Fichera, M., Aiello, V., Statello, G., Fiorenza, P. and Sinatra, F. (2007) Experimental characterization of proteins immobilized on Si-based materials. Microelecron. Eng. 84, 468-473.   DOI   ScienceOn
77 Kim, M. I., Kim, J., Lee, J., Shin, S., Na, H. B., Hyeon, T., Park, H. G. and Chang, H. N. (2008) One-dimensional crosslinked enzyme aggregateds in SBA-15: superior catalytic behavior to conventional enzyme immobilization. Micropor. Mesopor. Mater. 111, 18-23.   DOI   ScienceOn
78 Crespilho, F. N., Ghica, M. E., Florescu, M., Nart, F. C., Oliveira Jr, O. N. and Brett, C. M. A. (2006) A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem. Commun. 8, 1665-1670.   DOI   ScienceOn
79 Delvaux, M. and Demoustier-Champagne, S. (2003) Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosens. Bioelectron. 18, 943-951.   DOI   ScienceOn
80 Kim, J., Park, J. and Kim, H. (2004) Synthesis and characterization of nanoporous silica support for enzyme immobilization. Colloids. Surf. A 241, 113-117.   DOI   ScienceOn
81 Wang, P., Dai, S., Waezsada, S. D., Tsao, A. Y. and Davison, B. H. (2001) Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. Biotechnol. Bioeng. 74, 249-255.   DOI   ScienceOn
82 Konwarh, R., Kalita, D., Mahanta, C., Mandal, M. and Karak, N. (2010) Magnetically recyclable, antimicrobial, and catalytically enhanced polymer-assisted "green" nanosystem-immobilized Aspergillus niger amyloglucosidase. Appl. Microbiol. Biotechnol. doi 10.1007/s00253-010-2658-4.   DOI
83 Cseslik, C. and Winter, R. (2001) Effect of temperature on the conformation of lysozyme adsorbed to silica particles. Phys. Chem. Chem. Phys. 3, 235-239.   DOI   ScienceOn
84 Turner, N. J. (2003) Controlling chirality. Curr. Opin. Biotechnol. 14, 401-406.   DOI   ScienceOn