• Title/Summary/Keyword: Nanostructure fabrication

검색결과 102건 처리시간 0.026초

원자층증착법을 이용한 수소 생성용 광전기화학 전극 소재 개발 동향 (Recent Developments in H2 Production Photoelectrochemical Electrode Materials by Atomic Layer Deposition)

  • 한정환
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.60-68
    • /
    • 2018
  • The design and fabrication of photoelectrochemical (PEC) electrodes for efficient water splitting is important for developing a sustainable hydrogen evolution system. Among various development approaches for PEC electrodes, the chemical vapor deposition method of atomic layer deposition (ALD), based on self-limiting surface reactions, has attracted attention because it allows precise thickness and composition control as well as conformal coating on various substrates. In this study, recent research progress in improving PEC performance using ALD coating methods is discussed, including 3D and heterojunction-structured PEC electrodes, ALD coatings of noble metals, and the use of sulfide materials as co-catalysts. The enhanced long-term stability of PEC cells by ALD-deposited protecting layers is also reviewed. ALD provides multiple routes to develop improved hydrogen evolution PEC cells.

Evaluation of 1/f Noise Characteristics for Si-Based Infrared Detection Materials

  • Ryu, Ho-Jun;Kwon, Se-In;Cheon, Sang-Hoon;Cho, Seong-Mok;Yang, Woo-Seok;Choi, Chang-Auck
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.703-708
    • /
    • 2009
  • Silicon antimony films are studied as resistors for uncooled microbolometers. We present the fabrication of silicon films and their alloy films using sputtering and plasma-enhanced chemical vapor deposition. The sputtered silicon antimony films show a low 1/f noise level compared to plasma-enhanced chemical vapor deposition (PECVD)-deposited amorphous silicon due to their very fine nanostructure. Material parameter K is controlled using the sputtering conditions to obtain a low 1/f noise. The calculation for specific detectivity assuming similar properties of silicon antimony and PECVD amorphous silicon shows that silicon antimony film demonstrates an outstanding value compared with PECVD Si film.

Simulation of Atom Focusing for Nanostructure Fabrication

  • Lee, Chang-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권5호
    • /
    • pp.600-604
    • /
    • 2003
  • The light pressure force from an optical standing wave (SW) can focus an atomic beam to submicrometer dimensions. To make the best of this technique it is necessary to find a set of optimal experimental parameters. In this paper we consider theoretically the chromium atoms focusing and demonstrate that the focusing performance depends not only on the strength of but also on the time atoms take to traverse the force field. The general conclusions drawn can easily be applied to other atoms. To analyze the problem we numerically integrate a coupled time-dependent $Schr{\"{o}}dinger$ equation over a wide range of experimental parameters. It is found that an optimal atomic beam speed-laser intensity pair does exist, which could give substantially improved focusing over the one with the experimental parameters given in the literature. It is also shown that the widely used classical particle optics approach can lead to erroneous predictions.

AAO template를 이용한 나노 구조의 제조와 특성 (Fabrication of nanomaterials using an Anodic Aluminum Oxide(AAO) thin film and their properties)

  • 유현민;이재형;이종인;정학기;정동수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.814-817
    • /
    • 2010
  • 다공성 알루미나 나노틀은 2단계의 양극산화 과정에 의해 세공의 직경이 균일하며, 배열이 규칙적이며 나노틀에 완벽하게 수직으로 배향되어 있다. 게다가 세공의 직경과 세공간의 간격은 양극산화시 전압과 전해질등을 바꾸어 주면 쉽게 조절할 수 있다. 금속을 세공내에 전기 화학적으로 탐지하면 각 세공 내에 규칙적인 직경의 금속 나노선이 생성된다.

  • PDF

Fabrication of Ordered Nanoporous Alumina Membrane by PDMS Pre-Patterning

  • 김별;이진석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.265.1-265.1
    • /
    • 2013
  • Nanoporous anodic aluminum oxide (AAO), a self-ordered hexagonal array has various applications for nanofabrication such as nanotemplate, and nanostructure. In order to obtain highly-ordered porous alumina membranes, Masuda et al. proposed a two-step anodization process however this process is confined to small domain size and long hours. Recently, alternative methods overcoming limitations of two-step process were used to make prepatterned Al surface. In this work, we confirmed that there is a specific tendency used a PDMS stamp to obtain a pre-patterned Al surface. Using the nanoindentaions of a PDMS stamp as chemical carrier for wet etching, we can easily get ordered nanoporous template without two-step process. This chemical etching method using a PDMS stamp is very simple, fast and inexpensive. We use two types of PDMS stamps that have different intervals (800nm, 1200nm) and change some parameters have influenced the patterning of being anodized, applied voltage, soaking and stamping time. Through these factors, we demonstrated the patterning effect of large scale PDMS stamp.

  • PDF

항균 특성을 위한 나노구조 유연 필름의 제작 및 평가 (Fabrication and Assessment of Flexible Nanostructured Film for Antibacterial Properties)

  • 박현하
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.105-109
    • /
    • 2022
  • In the field of medical and marine industries, antibacterial surfaces have been emerged as one of the most important issues. Recently, many researchers have been studying antibacterial surfaces to kill bacteria or prevent the adhesion of bacteria. In their researches, various materials and structures are suggested to inhibit the adhesion of bacteria or kill the attached bacteria. However, chemical materials such as antibiotics or metal could be toxic. Moreover, frequent use of antibiotics causes super bacteria having resistance to antibiotics. In this study, nano-pillar structured surface was fabricated using polyurethane acrylate (PUA) and the mechanically induced antibacterial function was confirmed based on the fabricated nanostructures. Nanostructures can damage the bacterial membrane of Gram-negative bacteria through stretching of bacterial membrane via interaction with the nanostructures and the bacterial membrane. Consequently, the proposed transparent, flexible and nanostructured PUA films can be one of promising candidates for antifouling and antibacterial surfaces which can be applied in various industries.

Fabrication of Hierarchical Nanostructures Using Vacuum Cluster System

  • Lee, Jun-Young;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.389-390
    • /
    • 2012
  • In this study, we fabricate a superhydrophobic surface made of hierarchical nanostructures that combine wax crystalline structure with moth-eye structure using vacuum cluster system and measure their hydrophobicity and durability. Since the lotus effect was found, much work has been done on studying self-cleaning surface for decades. The surface of lotus leaf consists of multi-level layers of micro scale papillose epidermal cells and epicuticular wax crystalloids [1]. This hierarchical structure has superhydrophobic property because the sufficiently rough surface allows air pockets to form easily below the liquid, the so-called Cassie state, so that the relatively small area of water/solid interface makes the energetic cost associated with corresponding water/air interfaces smaller than the energy gained [2]. Various nanostructures have been reported for fabricating the self-cleaning surface but in general, they have the problem of low durability. More than two nanostructures on a surface can be integrated together to increase hydrophobicity and durability of the surface as in the lotus leaf [3,5]. As one of the bio-inspired nanostructures, we introduce a hierarchical nanostructure fabricated with a high vacuum cluster system. A hierarchical nanostructure is a combination of moth-eye structure with an average pitch of 300 nm and height of 700 nm, and the wax crystalline structure with an average width and height of 200 nm. The moth-eye structure is fabricated with deep reactive ion etching (DRIE) process. $SiO_2$ layer is initially deposited on a glass substrate using PECVD in the cluster system. Then, Au seed layer is deposited for a few second using DC sputtering process to provide stochastic mask for etching the underlying $SiO_2$ layer with ICP-RIE so that moth-eye structure can be fabricated. Additionally, n-hexatriacontane paraffin wax ($C_{36}H_{74}$) is deposited on the moth-eye structure in a thermal evaporator and self-recrystallized at $40^{\circ}C$ for 4h [4]. All of steps are conducted utilizing vacuum cluster system to minimize the contamination. The water contact angles are measured by tensiometer. The morphology of the surface is characterized using SEM and AFM and the reflectance is measured by spectrophotometer.

  • PDF

나노선 형상의 산화아연 박막의 수소 가스 감지 특성 (Hydrogen Gas Sensing Characteristics of ZnO Wire-like Thin Films)

  • 웬래훙;안은성;박성용;정훈철;김효진;김도진
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.427-431
    • /
    • 2009
  • ZnO wire-like thin films were synthesized through thermal oxidation of sputtered Zn metal films in dry air. Their nanostructure was confirmed by SEM, revealing a wire-like structure with a width of less than 100 nm and a length of several microns. The gas sensors using ZnO wire-like films were found to exhibit excellent $H_2$ gas sensing properties. In particular, the observed high sensitivity and fast response to $H_2$ gas at a comparatively low temperature of $200^{\circ}C$ would lead to a reduction in the optimal operating temperature of ZnO-based $H_2$ gas sensors. These features, together with the simple synthesis process, demonstrate that ZnO wire-like films are promising for fabrication of low-cost and high-performance $H_2$ gas sensors operable at low temperatures. The relationship between the sensor sensitivity and $H_2$ gas concentration suggests that the adsorbed oxygen species at the surface is $O^-$.

개별 수직성장된 나노튜브와 금속의 복합 구조체 제작 및 분석 (Fabrication and Analysis of a Free-Standing Carbon Nanotube-Metal Hybrid Nanostructure)

  • 장원석;황준연;한창수
    • 대한기계학회논문집B
    • /
    • 제36권1호
    • /
    • pp.25-29
    • /
    • 2012
  • 탄소나노튜브의 기계적 특성과 금속의 전기적 특성을 이용할 수 있는 나노 복합구조체의 특성은 두 재료 사이의 계면이 중용한 역할을 한다. 본 연구에서는 나노임프린트 패터닝을 이용하여 촉매금속을 패턴하고 이를 이용한 개별 성장된 탄소나노튜브 위에 증기증착법을 이용하여 니켈을 증착한 나노구 조체의 계면을 조사하였다. 이를 위하여 고해상의 투사전자현미경과 3 차원 원자 프로브 분석기를 이용하였다. 탄소나노튜브 위에서 성장된 나노결정의 경우 준 안정 상태인 조밀입방구조의 $Ni_3C$ 를 형성하는 것으로 나타났다. 이러한 특성을 이용한 나노복합체의 응용가능성을 살펴보았다.

스퍼터 증착된 알루미늄 박막을 이용한 양극산화 알루미늄 나노템플레이트 제조 (Fabrication of anodic aluminum oxide nanotemplate using sputtered aluminum thin film)

  • 이재형
    • 한국정보통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.923-928
    • /
    • 2010
  • 양극산화 알루미늄(anodic aluminum oxide, AAO) 나노템플레이트는 제작이 쉬우며, 저비용, 대면적 제작이 가능하다는 장점으로 인해 이를 나노 전자소자 제작에 응용하려는 많은 연구가 이루어지고 있다. 이러한 나노템플레이트를 이용하면 기공의 직경이나 밀도를 변화킴으로써 나노구조의 물질의 크기나 밀도를 제어할 수 있다. 따라서 본 논문에서는 나노 전자소자 제작에 응용할 수 있는 AAO 나노템플레이트를 2단계 양극산화법에 의해 제조하였다. 이를 위해 기존의 알루미늄 판 대신 실리콘 웨이퍼 상에 DC 마그네트론 스퍼터법으로 $2{\mu}m$ 두께의 알루미늄 박막을 증착하였고, 전해액으로 사용한 옥살산 용액의 온도 및 양극산화 전압에 따른 다공성 알루미나 막의 미세구조를 조사하였다. 전해액 온도가 $8^{\circ}C$에서 $20^{\circ}C$로 높아짐에 따라 다공성 알루미나 막의 성장속도는 86.2 nm/min에서 179.5 nm/min으로 증가하였다. 최적 조건에서 제작된 AAO 나노 템플레이트의 기공 직경 및 깊이는 각각 70 nm와 $1\;{\mu}m$이었다.