DOI QR코드

DOI QR Code

Simulation of Atom Focusing for Nanostructure Fabrication

  • Published : 2003.05.20

Abstract

The light pressure force from an optical standing wave (SW) can focus an atomic beam to submicrometer dimensions. To make the best of this technique it is necessary to find a set of optimal experimental parameters. In this paper we consider theoretically the chromium atoms focusing and demonstrate that the focusing performance depends not only on the strength of but also on the time atoms take to traverse the force field. The general conclusions drawn can easily be applied to other atoms. To analyze the problem we numerically integrate a coupled time-dependent $Schr{\"{o}}dinger$ equation over a wide range of experimental parameters. It is found that an optimal atomic beam speed-laser intensity pair does exist, which could give substantially improved focusing over the one with the experimental parameters given in the literature. It is also shown that the widely used classical particle optics approach can lead to erroneous predictions.

Keywords

References

  1. Timp, G. et al. Phys. Rev. Lett. 1992, 69, 1636. https://doi.org/10.1103/PhysRevLett.69.1636
  2. McClelland, J. J. et al. Science 1993, 162, 877.
  3. Prentiss, M.; Timp, G.; Bigelow, N.; Behringer, R. E.; Cunningham,J. E. Appl. Phys. Lett. 1992, 60, 1027. https://doi.org/10.1063/1.106488
  4. Seideman, T. In Molecular Optics in Intense Fields: From Lenses to Mirrors, in Molecular Beams; Campargue, R. Ed.; Springer- Verlag: Berlin, 2001; p 133
  5. Phys. Rev. A 1997, 56, R17 https://doi.org/10.1103/PhysRevA.56.R17
  6. J. Chem. Phys. 1997, 106, 2881 https://doi.org/10.1063/1.473351
  7. J. Chem. Phys. 1997, 107, 10420 https://doi.org/10.1063/1.474206
  8. J. Chem. Phys. 1999, 111, 4113. https://doi.org/10.1063/1.479184
  9. Nowad, S.; Pfau, T.; Mlynek, J. Appl. Phys. B: Lasers Opt. 1996, 63, 203. https://doi.org/10.1007/BF01095274
  10. Nowad, S.; Pfau, T.; Mlynek, J. Phys. Rep. 1994, 240, 143. https://doi.org/10.1016/0370-1573(94)90066-3
  11. McClelland, J. J. et al. Aust. J. Phys. 1996, 49, 555 https://doi.org/10.1071/PH960555
  12. McClelland, J. J. J. Opt. Soc. B 1995, 12, 1761. https://doi.org/10.1364/JOSAB.12.001761
  13. Anderson, W. R. et al. Phys. Rev. A 1999, 59, 2476. https://doi.org/10.1103/PhysRevA.59.2476
  14. Lee, C. J. Phys. Rev. A 2000, 53, 4056.
  15. Dalibard, J.; Cohen-Tannoudji, C. J. Opt. Soc. Am. B 1985, 2, 1707. https://doi.org/10.1364/JOSAB.2.001707
  16. See, for example, Chu, S.; Wieman, C. E. J. Opt. Soc. Am. B 1989, 6, 2020.
  17. Cohen-Tannoudji, C. In Fundamental Systems in QuantumOptics; Dalibard, J., Raimond, J.-M., Zinn-Justin J., Eds.; North-Holland: Amsterdam, 1992; p 1.
  18. Ashkin, A. Phys. Rev. Lett. 1978, 40, 729. https://doi.org/10.1103/PhysRevLett.40.729
  19. Kidan, T.; Adler, J.; Ron, A. Computers in Physics 1998, 12, 471. https://doi.org/10.1063/1.168718

Cited by

  1. Optical Lattices for Optimal Atom Lenses vol.38, pp.2, 2017, https://doi.org/10.1002/bkcs.11075