DOI QR코드

DOI QR Code

원자층증착법을 이용한 수소 생성용 광전기화학 전극 소재 개발 동향

Recent Developments in H2 Production Photoelectrochemical Electrode Materials by Atomic Layer Deposition

  • 한정환 (서울과학기술대학교 신소재공학과)
  • Han, Jeong Hwan (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2018.02.05
  • 심사 : 2018.02.17
  • 발행 : 2018.02.28

초록

The design and fabrication of photoelectrochemical (PEC) electrodes for efficient water splitting is important for developing a sustainable hydrogen evolution system. Among various development approaches for PEC electrodes, the chemical vapor deposition method of atomic layer deposition (ALD), based on self-limiting surface reactions, has attracted attention because it allows precise thickness and composition control as well as conformal coating on various substrates. In this study, recent research progress in improving PEC performance using ALD coating methods is discussed, including 3D and heterojunction-structured PEC electrodes, ALD coatings of noble metals, and the use of sulfide materials as co-catalysts. The enhanced long-term stability of PEC cells by ALD-deposited protecting layers is also reviewed. ALD provides multiple routes to develop improved hydrogen evolution PEC cells.

키워드

참고문헌

  1. J. D. Holladay, J. Hu, D. L. King and Y. Wang: Catal. today, 139 (2009) 244. https://doi.org/10.1016/j.cattod.2008.08.039
  2. A. Fujishima and K. Honda: Nature, 238 (1972) 37. https://doi.org/10.1038/238037a0
  3. N. Bao, L. Shen, T. Takata and K. Domen: Chem. Mater., 20 (2008) 110. https://doi.org/10.1021/cm7029344
  4. C. Santato, M. Ulmann and J. Augustynski: Adv. Mater., 13 (2001) 511. https://doi.org/10.1002/1521-4095(200104)13:7<511::AID-ADMA511>3.0.CO;2-W
  5. J. Gan, X. Lu and Y. Tong: Nanoscale, 6 (2014) 7142. https://doi.org/10.1039/c4nr01181c
  6. M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sunmathy: Renew. Sustain. Energy Rev., 11 (2007) 401. https://doi.org/10.1016/j.rser.2005.01.009
  7. R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han and C. Li: Energy Environ. Sci., 8 (2015) 2377. https://doi.org/10.1039/C5EE01398D
  8. V. Pore, M. Ritala, M. Leskela, S. Areva, M. Jarn and J. Jarnsrom: J. Mater. Chem., 17 (2007) 1361. https://doi.org/10.1039/B617307A
  9. H. E. Cheng, W. J. Lee, C. M. Hsu, M. H. Hon and C. L. Huang: Electrochem. Solid-State Lett., 11 (2008) D81. https://doi.org/10.1149/1.2968951
  10. S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. X. Guo and J. Tang: Energy Environ. Sci., 8 (2015) 731. https://doi.org/10.1039/C4EE03271C
  11. X. Xu, Z. Gao, Z. Cui, Y. Liang, Z. Li, S. Zhu, X. Yang and J. Ma: ACS Appl. Mater. Interfaces, 8 (2016) 91. https://doi.org/10.1021/acsami.5b06536
  12. J. Han, X. Zong, X. Zhou and C. Li: RSC Adv., 5 (2015) 10790. https://doi.org/10.1039/C4RA13896A
  13. Y. Tang, X. Hu and C. Liu: Phys. Chem. Chem. Phys., 16 (2014) 25321. https://doi.org/10.1039/C4CP04057K
  14. S. Hilliard, G. Baldinozzi, D. Friedrich, S. Kressman, H. Strub, V. Artero and C. Laberty-Robert: Sustainable Energy Fuels, 1 (2017) 145. https://doi.org/10.1039/C6SE00001K
  15. S. U. M. Khan and J. Akikusa: J. Phys. Chem. B, 103 (1999) 7184. https://doi.org/10.1021/jp990066k
  16. C. W. Lai and S. Sreekantan: Int. J. Hydrogen Energy, 38 (2013) 2156. https://doi.org/10.1016/j.ijhydene.2012.12.025
  17. G. Zhao, H. Kozuka and T. Yoko: Thin Solid Films, 277 (1996) 147. https://doi.org/10.1016/0040-6090(95)08006-6
  18. C. Liu, P. Li, G. Wu, B. Luo, S. Lin, A. Ren, and W. Shi: RSC Adv., 5 (2015) 33938. https://doi.org/10.1039/C5RA03086B
  19. K. Nagasuna, T. Akita, M. Fujishima and H. Tada: Langmuir, 27 (2011) 7294. https://doi.org/10.1021/la200587s
  20. R. L. Puurunen: J. Appl. Phys., 97 (2005) 121301. https://doi.org/10.1063/1.1940727
  21. Y. J. Hwang, A. Boukai and P. Yang: Nano Lett., 9 (2009) 410.
  22. S. H. Huang, C. C. Wang, S. Y. Liao, J. Y. Gan and T. P Perng: Thin Solid Films, 616 (2016) 151. https://doi.org/10.1016/j.tsf.2016.08.003
  23. Y. Lin, S. Zhou, S. W. Sheehan and D. Wang: J. Am. Chem. Soc., 133 (2011) 2398.
  24. H. Zhang and C. Cheng: ACS Energy Lett., 2 (2017) 813. https://doi.org/10.1021/acsenergylett.7b00060
  25. W. Xiong, Z. Guo, H. Li, R. Zhao and X. Wang: ACS Energy Lett., 2 (2017) 2778. https://doi.org/10.1021/acsenergylett.7b01056
  26. C. Li, T. Wang, Z. Luo, S. Liu and J. Gong: Small, 12 (2016) 3415.
  27. D. Ma, J. W. Shi, Y. Zou, Z. Fan, X. Ji, C. Niu and L. Wang: Nano Energy, 39 (2017) 183. https://doi.org/10.1016/j.nanoen.2017.06.047
  28. C. Cheng, H. Zhang, W. Ren, W. Dong and Y. Sun: Nano Energy, 2 (2013) 779. https://doi.org/10.1016/j.nanoen.2013.01.010
  29. J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng and Y. Qin: Angew. Chem. Int. Ed., 56 (2017) 816.
  30. X. Yang, R. Liu, C. Du, P. Dai, Z. Zheng and D. Wang: ACS Appl. Mater. Interfaces, 6 (2014) 12005. https://doi.org/10.1021/am500948t
  31. M. T. Mayer, C. Du and D. Wang: J. Am. Chem. Soc., 134 (2012) 12406. https://doi.org/10.1021/ja3051734
  32. B. Huang, W. Yang, Y. Wen, B. Shan and R. Chen: ACS Appl. Mater. Interfaces, 7 (2015) 422. https://doi.org/10.1021/am506392y
  33. J. Kim, T. Iivonen, J. Hamalainen, M. Kemell, K. Meinander, K. Mizohata, L. Wang, J. Raisanen, R. Beranek, M. Leskela and A. Devi: Chem. Mater., 29 (2017) 5796. https://doi.org/10.1021/acs.chemmater.6b05346
  34. S. K. Sarkar, J. Y. Kim, D. N. Goldstein, N. R. Neale, K. Zhu, C. M. Elliott, A. J. Frank and S. M. George: J. Phys. Chem. C, 114 (2010) 8032.
  35. Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou and D. Wang: J. Am. Chem. Soc., 134 (2012) 5508. https://doi.org/10.1021/ja300319g
  36. J. Yu, L. Qi and M. Jaroniec: J. Phys. Chem. C., 114 (2010) 13118-13125
  37. S. Y. Tee, C. J. J. Lee, S. S. Dinachali, S. C. Lai, E. L. Williams, H. K. Luo, D. Chi, T. S. Andy Hor and M. Y. Han: Nanotechnology, 26 (2015) 415401. https://doi.org/10.1088/0957-4484/26/41/415401
  38. N. P. Dasgupta, C. Liu, S. Andrews, F. B. Prinz and P. Yang: J. Am. Chem. Soc., 135 (2013) 12932. https://doi.org/10.1021/ja405680p
  39. T. D. Gould, A. M. Lubers, A. R. Corpuz, A. W. Weimer, J. L. Falconer and J. W. Medlin: ACS Catal., 5 (2015) 1344.
  40. R. Liu, L. Han, Z. Huang, I. M. Ferrer, A. H. M. Smets, M. Zeman, B. S. Brunschwig and N. S. Lewis: Thin Solid Films, 586 (2015) 28. https://doi.org/10.1016/j.tsf.2015.04.018
  41. C. C. Wang, Y. C. Hsueh, C. Y. Su, C. C. Kei and T. P. Perng: Nanotechnology, 26 (2015) 254002. https://doi.org/10.1088/0957-4484/26/25/254002
  42. J. Lu, K. B. Low, Y. Lei, J. A. Libera, A. Nicholls, P. C. Stair and J. W. Elam: Nat. Commun., 5 (2014) 3264. https://doi.org/10.1038/ncomms4264
  43. S. Oh, J. B. Kim, J. T. Song, J. Oh and S. H. Kim: J. Mater. Chem. A, 5 (2017) 3304. https://doi.org/10.1039/C6TA10707A
  44. Y. Cimen, A. W. Peters, J. R. Avila, W. L. Hoffeditz, S. Goswami, O. K. Farha and J. T. Hupp: Langmuir, 32 (2016) 12005. https://doi.org/10.1021/acs.langmuir.6b02699
  45. A. W. Peters, Z. Li, O. K. Farha and J. T. Hupp: ACS Appl. Mater. Interfaces, 8 (2016) 20675. https://doi.org/10.1021/acsami.6b04729
  46. A. G. Scheuermann and P. C. McIntyre: J. Phys. Chem. Lett., 7 (2016) 2867. https://doi.org/10.1021/acs.jpclett.6b00631
  47. M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gary, N. S. Lewis and J. M. Spurgeon: J. Phys. Chem. Lett., 4 (2013) 4188. https://doi.org/10.1021/jz4022415
  48. S. Li, P. Zhang, X. Song and L. Gao: ACS Appl. Mater. Interfaces, 7 (2015) 18560. https://doi.org/10.1021/acsami.5b04936
  49. Q. Cheng, M. K. Benipal, Q. Liu, X. Wang, P. A. Crozier, C. K. Chan and R. J. Nemanich: ACS Appl. Mater. Interfaces, 9 (2017) 16138. https://doi.org/10.1021/acsami.7b01274
  50. Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang and P. Wang: ACS Nano, 7 (2013) 1709. https://doi.org/10.1021/nn3057092
  51. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel and E. Thimsen: Nat. Mater., 10 (2011) 456. https://doi.org/10.1038/nmat3017

피인용 문헌

  1. /Si Heterojunction vol.29, pp.7, 2019, https://doi.org/10.1002/adfm.201807271