DOI QR코드

DOI QR Code

Hydrogen Gas Sensing Characteristics of ZnO Wire-like Thin Films

나노선 형상의 산화아연 박막의 수소 가스 감지 특성

  • Nguyen, Le Hung (Department of Materials Science and Engineering, Chungnam National University) ;
  • Ahn, Eun-Seong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Park, Seong-Yong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jung, Hoon-Chul (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyo-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University)
  • 웬래훙 (충남대학교 공과대학 재료공학과) ;
  • 안은성 (충남대학교 공과대학 재료공학과) ;
  • 박성용 (충남대학교 공과대학 재료공학과) ;
  • 정훈철 (충남대학교 공과대학 재료공학과) ;
  • 김효진 (충남대학교 공과대학 재료공학과) ;
  • 김도진 (충남대학교 공과대학 재료공학과)
  • Published : 2009.08.27

Abstract

ZnO wire-like thin films were synthesized through thermal oxidation of sputtered Zn metal films in dry air. Their nanostructure was confirmed by SEM, revealing a wire-like structure with a width of less than 100 nm and a length of several microns. The gas sensors using ZnO wire-like films were found to exhibit excellent $H_2$ gas sensing properties. In particular, the observed high sensitivity and fast response to $H_2$ gas at a comparatively low temperature of $200^{\circ}C$ would lead to a reduction in the optimal operating temperature of ZnO-based $H_2$ gas sensors. These features, together with the simple synthesis process, demonstrate that ZnO wire-like films are promising for fabrication of low-cost and high-performance $H_2$ gas sensors operable at low temperatures. The relationship between the sensor sensitivity and $H_2$ gas concentration suggests that the adsorbed oxygen species at the surface is $O^-$.

Keywords

References

  1. T. Seiyama, A. Kato and M. Nagatani, Anal. Chem., 34, 1502 (1962) https://doi.org/10.1021/ac60191a001
  2. M. Aslam, V. A. Chaudhary, I. S. Mulla, S. R. Sainkar, A. B. Mandale, A. A. Belhekar and K. Vijayamohanan, Sens. Actuators A, 75, 162 (1999) https://doi.org/10.1016/S0924-4247(99)00050-3
  3. Y. Min, H. L. Tuller, S. Palzer, J. Wollenstein and H. Bottner, Sens. Actuators B, 93, 435 (2003) https://doi.org/10.1016/S0925-4005(03)00170-9
  4. D. C. Look, Mater. Sci. Eng. B, 80, 383 (2001) https://doi.org/10.1016/S0921-5107(00)00604-8
  5. S. Basu and A. Dutta, Mater. Chem. Phys., 47, 93 (1997) https://doi.org/10.1016/S0254-0584(97)80035-1
  6. N. Koshizaki and T. Oyama, Sens. Actuators B, 66, 119 (2000) https://doi.org/10.1016/S0925-4005(00)00323-3
  7. J. Xu, Q. Pan, Y. Shun and Z. Tian, Sens. Actuators B, 66, 277 (2000) https://doi.org/10.1016/S0925-4005(00)00381-6
  8. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Appl. Phys. Lett., 84, 3654 (2004) https://doi.org/10.1063/1.1738932
  9. N. Brilis, P. Romesis, D. Tsamakis and M. Kompitsas, Superlattices Microstruct., 38, 283 (2005) https://doi.org/10.1016/j.spmi.2005.08.003
  10. A. Z. Sadek, W. Wlodarski, K. Kalantar-zadeh and S. Choopun, Sensors 2005 IEEE, 1326 (2005) https://doi.org/10.1109/ICSENS.2005.1597952
  11. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton and J. Lin, Appl. Phys. Lett., 86, 243503 (2005) https://doi.org/10.1063/1.1949707
  12. L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, S. J. Pearton, H. T. Wang, B. S. Kang, F. Ren, J. Jun and J. Lin, Appl. Phys. Lett., 87, 222106 (2005) https://doi.org/10.1063/1.2136070
  13. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan and L. Vayssieres, Nanotechnology, 17, 4995 (2006) https://doi.org/10.1088/0957-4484/17/19/037
  14. H. Tang, M. Yan, H. Zhang, S. Li, X. Ma, M. Wang and D. Yang, Sens. Actuators B, 114, 910 (2006) https://doi.org/10.1016/j.snb.2005.08.010
  15. S.-M. Park, S.-L. Zhang and J. S. Huh, Kor. J. Mater. Res., 18, 367 (2008) (in Korean) https://doi.org/10.3740/MRSK.2008.18.7.367
  16. J. Jung, H. Song, Y. Kang, D. Oh, H. Jung, Y. Cho and D. Kim, Kor. J. Mater. Res., 18, 529 (2008) (in Korean) https://doi.org/10.3740/MRSK.2008.18.10.529
  17. S. Cho, J. Ma, Y. Kim, G. K. L. Wong and J. B. Ketterson, Appl. Phys. Lett., 75, 2761 (1999) https://doi.org/10.1063/1.125141
  18. Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang and H. H. Hng, Appl. Phys. Lett., 94, 322 (2003)
  19. J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang and M. Wang, Appl. Surf. Sci, 229, 311 (2004) https://doi.org/10.1016/j.apsusc.2004.02.010
  20. S. Y. Park, H. Jung, E. Ahn, L. H. Nguyen, Y. Kang, H. Kim and D. Kim, Kor. J. Mater. Res., 18, 574 (2008) (in Korean)
  21. B. D. Cullity, Elements of X-ray Diffraction, p. 102, Addison-Wesley, Reading, (1978)
  22. M. Che and A. J. Trench, Adv. Catal., 31, 77 (1982) https://doi.org/10.1016/S0360-0564(08)60453-8
  23. R. W. J. Scott, S. M. Yang, G. Chabanis, D. E. Williams and G. A. Ozin, Adv. Mater., 13, 1468 (2001) https://doi.org/10.1002/1521-4095(200110)13:19<1468::AID-ADMA1468>3.0.CO;2-O
  24. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sens. Actuators B, 114, 969 (2006) https://doi.org/10.1016/j.snb.2005.07.058
  25. D. R. Patil and L. A. Patil, Sens. Actuators B, 123, 546 (2007) https://doi.org/10.1016/j.snb.2006.09.060