• 제목/요약/키워드: Nanoindentation

검색결과 216건 처리시간 0.032초

표면크랙 예측을 위한 결정립 제어 레오로지 소재 표면의 나노 변형특성에 관한 연구 (A Study on the Nano-Deformation Characteristics of Grain-Size Controlled Rheology Material Surfaces for Surface Crack Prediction)

  • 윤성원;김현일;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.355-358
    • /
    • 2004
  • In this study, the deformation characteristics of grain-size controlled rheology materials surfaces were investigated as a part of the research on the surface crack prediction in semi-solid formed automobile components. The microstructure of rheology Al-Si alloys consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary region of semi-solid aluminum alloys (356 alloy and 319 alloy) were investigated through the nanoindentation/scratch experiments and the AFM observation.

  • PDF

나노인덴테이션 하에서의 알루미늄의 팝인 변형 (Pop-In Deformation in Aluminum under Nanoindentation)

  • 김지수;윤존도
    • 한국세라믹학회지
    • /
    • 제42권4호
    • /
    • pp.287-291
    • /
    • 2005
  • 나노인덴테이션 시험시의 알루미늄의 팝인 변형에 대하여 연구하였다. 팝인 현상은 알루미늄의 표면 상태에 따라서 발생 유무가 결정되었다. 기계연마한 알루미늄에서는 팝인이 일어나지 않았고, 전해연마한 시편에서만이 팝인이 일어났다. 팝인이 일어나는 경우에는 나노인덴테이션 초기단계에서 탄성변형이 일어났으며 그 후에 갑자기 팝인 변형이 일어났으며 팝인 후에는 탄소성 변형이 일어났다. 전위 활동에 근거한 팝인 발생 메카니즘을 제시하였으며 이는 FIB와 TEM에 의한 미세구조 분석 결과와 일치하였다.

나노인덴테이션을 이용하여 극미세 패턴을 제작하기 위한 나노 변형의 유한요소해석(I) (Finite Element Analysis of Nano Deformation for the Hyper-Fine Pattern Fabrication by using Nanoindentation)

  • 이정우;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.210-217
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and pile-up was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-l0mm. The result of the investigation will be applied to the fabrication of the hyper-fine pattern and mold.

Steel Cord 선재의 판류응력 평가 및 완화에 관한 연구 (The Evaluation and Relaxation of Residual Stress of Steel Cord)

  • 이상곤;황원호;김병민;배철민;이충열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2006
  • Recently the quality improvement of the steel cord product is demanded by the tire market. After wire drawing process, produced residual stresses have a harmful effect on the durability of the wire and become the cause which decreases the quality of the product. Therefore, to improve the quality of the steel cord product, the research regarding the method of residual stress relaxation is necessary. To evaluate the quality of the drawn wire, it is important to measure the residual stress, because the residual stress decides a variety of the quality level which is demanded in the drawn wire. This study proposed a residual stress relaxation method in the drawn wire using FE analysis. The validity of the analysis results was verified by nanoindentation test.

  • PDF

나노인덴테이션 공정을 이용하여 극미세 패턴을 제작하기 위한 나노변형의 유한요소해석(II) (Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nanoidentation Process (II))

  • 이정우;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic re cover and pile-up were proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1 -l0nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

다결정 미세입자 소각입계면에서의 전위밀도 확산 (Dislocation Density Propagation adjacent to the Low Angle Grain Boundaries of Polycrystalline Materials)

  • 마정범
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.618-622
    • /
    • 2011
  • Specialized large-scale computational finite-element and molecular dynamic models have been used in order to understand and predict how dislocation density emission and contact stress field due to nanoindentation affect inelastic deformation evolution scales that span the molecular to the continuum level in ductile crystalline systems. Dislocation density distributions and local stress fields have been obtained for different crystalline slip-system and grain-boundary orientations. The interrelated effects of grain-boundary interfaces and orientations, dislocation density evolution and crystalline structure on indentation inelastic regions have been investigated.

유도결합 플라즈마 파워변화에 따른 초경도 나노결정질 TiN 코팅막의 물성변화 (Effect of Inductively Coupled Plasma (ICP) Power on the Properties of Ultra Hard Nanocrystalline TiN Coatings)

  • 전성용
    • 한국세라믹학회지
    • /
    • 제50권3호
    • /
    • pp.212-217
    • /
    • 2013
  • Ultra hard TiN coatings were fabricated by DC and ICP (inductively coupled plasma) magnetron sputtering techniques. The effects of ICP power, ranging from 0 to 300 W, on the coating microstructure, crystallographic, and mechanical properties were systematically investigated with FE-SEM, AFM, HR-XRD and nanoindentation. The results show that ICP power has a significant influence on the coating microstructure and mechanical properties of TiN coatings. With an increasing ICP power, the film microstructure evolves from an apparent columnar structure to a highly dense one. Grain sizes of TiN coatings decreased from 12.6 nm to 8.7 nm with an increase of the ICP power. A maximum nanohardness of 67.6 GPa was obtained for the coatings deposited at an ICP power of 300 W. The crystal structure and preferred orientation in the TiN coatings also varied with the ICP power, exerting an effective influence on film nanohardness.

변형유기 식각 힐록 현상을 이용한 기계화학적 극미세 Writing 기법에 대한 연구 (A Study of Mechanochemical Hyperfine-Writing Technique Using Deformation Induced Etch Hillock Phenomena)

  • 강충길;윤성원
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.71-78
    • /
    • 2005
  • The purpose of this study is to suggest a hyperfine maskless writing technique by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wr\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (etching time, normal load, loading .ate, hold-time at the maximum load) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies. Finally, sample characters were written to show the possibility of the application.

극미세 점 구조체 제작을 위한 열간나노압입공정에서 평판형 폴리머소재의 기계적 특성 평가 (Evaluation of Mechanical Characteristic of Plate-Type Polymer in Thermal-Nanoindentation Process for Hyperfine Pit Structure Fabrication)

  • 이은경;이상매;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.108-111
    • /
    • 2007
  • It's important to measure quantitative properties about thermal-nano variation conduct of polymer for producing high quality components using NIL process. NanoScale indents can be used ad cells for molecular electronics and drug deliver, slots for integration into nanodevices, and defects for tailoring the structure and properties. In this study, it's to evaluate mechanical characteristic of polymer such as PMMA and PC at high temperature for manufacture of nano/micro size of polymer using indenter at high temperature. At high temperature mechanical properties of polymer have extreme variation. Because heating the polymer, it becomes softer than room temperature. In this case it is especially important to study for mechanical properties of polymer at high temperature.

  • PDF

Surface Morphology, Microstructure and Mechanical Properties of Thin Ag Films

  • Shugurov, Artur;Panin, Alexey;Chun, Hui-Gon;Oskomov, Konstantin
    • 한국분말재료학회지
    • /
    • 제10권3호
    • /
    • pp.190-194
    • /
    • 2003
  • Thin Ag films deposited onto $SiO_2/Si$ substrates by DC magnetron sputtering and thereafter annealed ,it temperatures 100-50$0^{\circ}C$ are investigated by scanning tunneling and atomic forte microscopy. It is shown that the film surface topography and microstructure are considerably changed as a result of annealing. To provide a quantitative estimation of the surface topography changes of Ag films the surface fractal dimension was calculated. Elasticity and hardness of the films are studied by a nanoindentation technique. The films are found to have value of elastic modulus close to that of bulk silver while their hardness and yield stress are essentially higher.