• Title/Summary/Keyword: Nanoemulsion

Search Result 72, Processing Time 0.031 seconds

Fabrication Technique of Nanoemulsion Using Silicone Oil and Application as Hydrophilic Ophthalmic Lens

  • Hye-In Park;A-Young Sung
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.315-320
    • /
    • 2024
  • In order to maximize the function and increase the compatibility of silicone hydrogel lens, this study compared and analyzed the properties of Amino modified silicone oil using mini and microemulsion technique, respectively. Optical and physical properties were evaluated by spectral transmittance, refractive index, water content, oxygen transmittance and contact angle measurements to evaluate the performance of the manufactured hydrogel lens. The spectral transmittance results revealed the copolymerization method lens showed 31 % of the visible light area, which did not satisfy the basic optical properties. However, the lens using the mini and microemulsion materials showed more than 90 % of the visible light area, satisfying the optical characteristics. In addition, all physical properties were superior to a basic hydrogel lens. The mini and microemulsion techniques effectively improved the stability and function of the ophthalmic hydrogel lens and are considered a promising ways of manufacturing an ophthalmic hydrogel contact lens with increased compatibility and stability.

Stable Liquid Paraffin-in-Water Nanoemulsions Prepared by Phase Inversion Composition Method (조성 상전이 방법으로 제조된 안정한 액상 파라핀-물 나노에멀젼)

  • Kim, Eun Hee;Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Oil-in-water nanoemulsions were prepared in the system of water/Span 80-Tween 80/long-chain paraffin oil via the PIC (phase inversion composition) method. With the increase of preparation temperature from $30^{\circ}C$ to $80^{\circ}C$, the diameter of emulsion droplets decreased from 120 nm to 40 nm, proving the formation of nanoemulsions. By varying the HLB (hydrophilic lipophilic balance) of mixed surfactants, we found that there was an optimum HLB around 12.0 ~ 13.0 corresponding to the minimum droplet size. The viscosity of nanoemulsions clearly increased with droplet volume fraction, f, but the droplet size slightly increased. Significantly, at ${\phi}{\leq}0.3$, the size distribution of nanoemulsions kept constant more than 2 months. These results proved that the viscous paraffin oil can hardly be dispersed by the PIC method at $30^{\circ}C$, but the increase in preparation temperature makes it possible for producing monodisperse nanoemulsions. Once the nanoemulsion is produced, the stability against Ostwald ripening is outstanding due to the extremely low solubility of the liquid paraffin oil in the continuous phase. The highly stable nanoemulsions are of great importance in cosmetic applications.

Formation and Stability of Nanoemulsion Containing CoQ10 by Mechanical Emulsification (코엔자임 Q10을 함유하는 나노에멀젼의 제조)

  • Yoo, In-Sang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.467-473
    • /
    • 2012
  • Coenzyme Q10 (CoQ10) is a natural lipid cofactor with antioxidant and anti-aging properties as cosmetic and food ingredients, involved in cellular energy metabolism. Here, nano-emulsions with CoQ10 were fabricated with lecithin, ethanol, oil, and sorbitan monostearate (Arlacel 60), as major components. Phase inversion emulsion method with ultrasonicator was utilized in producing CoQ10 solution, and stabilization effects from lecithin and ethanol and other diverse perturbation factors were evaluated over time. Physical properties of the emulsion were characterized such as its size, surface charges by zeta-potential, and the overall structures. Optimal concentrations of CoQ10 and Arlacel 60 were 0.8% and 3%, respectively, for producing the smallest sizes of nanoemersions in a 100 nm diameter with best morphology. No notable changes in the size were observed over 7 days from Ostwald ripening, when the concentration of Arlacel 60 was higher than 2%. Even after 270 days at room temperature, the size of nanoemulsions maintained as 115 nm in diameter, revealing only a 10% increase with high degrees of long termed stability and substantiality. In addition, changes in the surface potential occurred possible due to the flocculation effect on the nanoparticles.

Asymmetric Bioconversion of Acetophenone in Nano-Sized Emulsion Using Rhizopus oryzae

  • Li, Qingzhi;Shi, Yang;He, Le;Zhao, Hui
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.72-79
    • /
    • 2016
  • The fungal morphologies and pellet sizes were controlled in acetophenone reduction by Rhizopus oryzae. The acetophenone conversion and (S)-phenylethanol enantiomeric excesses (e.e.) reached the peak after 72 h of incubation when using pellets with 0.54 mm diameter, which showed an excellent performance compared with suspended mycelia, clumps, and pellets with 0.65 or 0.75 mm diameter. Furthermore, nano-sized acetophenone was used as a substrate to improve the performances of biotransformation work. The results showed that the conversion of nanometric acetophenone and (S)-phenylethanol e.e. reached the maximum (both >99%) after 32 h of incubation when using 0.54 mm diameter pellets, at least 24 h in advance of the control group. On the other hand, Tween 80 and 1, 2-propylene glycol showed low or no toxicity to cells. In conclusion, pellets and acetophenone nanoemulsions synergistically result in superior performances of acetophenone reduction.

Effect of Mixing Route and Temperature on Formation of Nanoemulsions (나노에멀젼 형성에서의 혼합 경로와 온도의 영향)

  • Cho, Wan Goo;Kim, Eun Hee;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.387-392
    • /
    • 2016
  • In this work, we compared the emulsion states having the same composition of liquid paraffin/ Span 80-Tween 80/ pure water and the different mixing paths and temperatures. Routes reaching the final composition in three component phase diagram were composed of three different ways. The average particle size of the emulsion prepared from the different mixing routes showed a significant difference and decreased as the mixing temperature was increased. However, the mixing route affected more in the size of the emulsions than mixing temperature.

Recent Emulsion Technology in Cosmetics (화장품용 유화 제조기술 최근동향)

  • Hwang, So-Ra;Nam, Jin-Oh;Lee, Byung-Jin;Song, Woo-Ho;Lee, Chang-Soo
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.207-214
    • /
    • 2012
  • Emulsions are mixture of immiscible liquids in which one is dispersed in all over the other. They have been applied to many applications including cosmetics, foods, drug delivery system (DDS), fine chemicals, and chemical separations. Especially, emulsion technology is one of the most useful technique to formulate cosmetics such as eye cream, foundation, and foam cleansing. In general, the emulsions can be generated by mechanical agitation of two immiscible fluids. However, the emulsions obtained by conventional method have limited in stability, monodispersity, and complicate process. We describe here preparation techniques of representative cosmetic emulsions such as liposome, liquid crystal emulsion, nanoemulsion, multiple emulsion, and pickering emulsion. Furthermore, various factors which can control the physical properties of each cosmetic emulsions are briefly discussed.

Study of complete transparent nano-emulsions which contain oils

  • Kwak, Jong-Im;Kim, Ju-Duck;J, i-Hong-Geun
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.258-267
    • /
    • 2003
  • Recently inside nano liposome particles or nano-emulsions which contain tough-melting physiology activity materials or the coefficient of low organism utilization promote the coefficient of organism utilization, so this part has been studied a lot because they can absorb selectly cosmetics, specially physiology activity materials, into the skin. Also, in particle size, cells interstitial lipid interval are 30~50nm, so nano-emulsions that the size is similar to 30~50 nm are made to study for absorbing quickly into the skin. And transparent skin which contains oils in common skin lotion dosage form has become the center of public interest. The used nano-emulsions in this study were unsaturated lecithin/co-surfactant! ethanol/ oil / water. And polysorbate 20/ polysorbate 80/ Dicetyl phosphate/hydrogenated .caster oil/ isoceteth-20/SLS were used in co-surfactant. The used oils were cyclomethicone and caprylic/capric triglyceride. The manufacturing process was that microfluidizer was fixed in 1000bar and transit times were changed from 1 to 10 times. From transparency and particle size, the transparency sequence was SLS> polysorbate 20= polysorbate 80> isoceteth-20> dicetyl phosphate >hydrogenated caster oil and the particle size was small. Specially cyclomethicone nano-emulsions, when we made unsaturated lecithin /SLS /ethanol/water/cyclomethicone, cyclomethicone 5% was good for transparency. And 20% of this was used for making transparent skin toner in common skin dosage form.

  • PDF

Apoptotic Effects of Eugenol-loaded Nanoemulsions in Human Colon and Liver Cancer Cell Lines

  • Majeed, Hamid;Antoniou, John;Fang, Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9159-9164
    • /
    • 2014
  • Background: In this study eugenol (EU) loaded nanoemulsions (NEs) emulsified with modified starch were prepared and their apoptotic potential against liver and colon cancer cells was examined in comparison with bulk EU. Materials and Methods: We prepared stable EU loaded NEs whcih were characterized by dynamic light scattering, centrifugation and gas chromatography. Furthermore, cell viability was determined using MTT assay, and apoptosis and cell cycle analysess by flow cytometry. Results: HB8065 (liver) and HTB37 (colon) cells when treated with EU:CA NEs demonstrated greater apoptotic cells percentages as evidenced by microscopic images and flow cytometric evaluations. It was observed that EU and EU:CA NE induced apoptosis in both cell lines via reactive oxygen species (ROS) generation. Conclusions: The present study demonstrated that ROS plays a critical role in EU and EU:CA NE induced apoptosis in HB8065 and HTB37 cells. This is the first report on the antiproliferative mechanisms of EU loaded NE.

Formulation and Antimicrobial Activity on Escherichia coli of Nanoemulsion Coated with Whey Protein Isolate

  • Bejrapha, Piyawan;Choi, Mi-Jung;Surassmo, Suvimol;Chun, Ji-Yeon;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.543-550
    • /
    • 2011
  • Various concentrations of whey protein isolate (WPI), such as 0.1, 0.5, 1.0, 2.5, and 5.0%(w/v), containing 1.0%(w/v) eugenol were prepared by high speed homogenization to formulate nanoemulsions (NEs) and to investigate their antimicrobial activity. The results showed that particle size decreased according to increases in WPI concentration. Similarly, the ${\zeta}$-potential value was reduced to a negative charge when using WPI concentrations >0.1%(w/v). In contrast, no significant differences in particle size were observed during 1 mon of storage, except for the 0.1%(w/v) WPI NE. The ${\zeta}$-potential value depended on the increase in WPI concentration and storage duration, except for NE1 and NE5, suggesting that a low or high concentration of emulsifier was not effective for maintaining the droplet form of the eugenol NE. The results of an antibacterial effect investigation indicated that the growth of Escherichia coli was inhibited based on an increase in eugenol concentration in all NE formulations. Moreover, a membrane permeability study showed that total leakage content increased according to incubation time.

Preparation of Phospholipid Nanoemulsions Loaded with Paclitaxel (파클리탁셀을 함유한 인지질 나노 에멀젼 제조)

  • Seo, Dong-Hoan;Han, Hee-Dong;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • Paclitaxel is an effective antineoplastic drug for various cancers especially ovarian and breast cancer. This study is to find the optimum condition for the preparation of nanoemulsions and to improve the stability and loading amount of paclitaxel in nanoemulsions. Nanoemulsions were prepared by modified spontaneous emulsification solvent diffusion method. It was composed of phosphatidylcholine:cholesterol:1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N-[Metoxy (Polyethylene glycol)-2000]:paclitaxel at a weight ratio of 5:3:1:1 and the Tween 80 as a surfactant. The particle size and the shape of nanoemulsions were measured by particle analyzer and SEM, respectively. The loading amount of paclitaxel in nanoemulsion was measured by UV-visible spectroscopy at 227 nm. The particle sizes were $80{\sim}120\;nm$ and the loading efficiency of paclitaxel was $8{\sim}39%$. The optimum conditions for the preparation of nanoemulsions were 8% w/w phospholipid, 16% w/v Tween 80 and 2% w/w paclitaxel, respectively.