Asymmetric Bioconversion of Acetophenone in Nano-Sized Emulsion Using Rhizopus oryzae |
Li, Qingzhi
(College of Life Science and Agronomy, Zhoukou Normal University)
Shi, Yang (College of Life Science and Agronomy, Zhoukou Normal University) He, Le (College of Life Science and Agronomy, Zhoukou Normal University) Zhao, Hui (College of Chemistry and Chemical Engineering, Zhoukou Normal University) |
1 | Ahmad N, Ramsch R, Llinàs M, Solans C, Hashim R, Tajuddin HA. 2014. Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems. Colloids Surf. B Biointerfeces 115: 267-274. DOI |
2 | Botalova O, Schwarzbauer J, Frauenrath T, Dsikowitzky L. 2009. Identification and chemical characterization of specific organic constituents of petrochemical effluents. Water Res. 43: 3797-3812. DOI |
3 | Dynesen J, Nielsen J. 2003. Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation. Biotechnol. Progr. 19: 1049-1052. DOI |
4 | Lawrence MJ, Rees GD. 2000. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliver. Rev. 45: 89-121. DOI |
5 | Fu YQ, Yin LF, Jiang R, Zhu HY, Ruan QC. 2015. Effects of calcium on the morphology of Rhizopus oryzae and L-lactic acid production, pp. 233-243. In Zhang TC, Nakajima M (eds.). Advances in Applied Biotechnology. Springer-Verlag Berlin Heidelberg, New York. |
6 | Gu C, Zhou Y, Liu L, Tan T, Deng L. 2013. Production of fumaric acid by immobilized Rhizopus arrhizus on net. Bioresour. Technol. 131: 303-307. DOI |
7 | Kim Y-M, Song H-G. 2009. Effect of fungal pellet morphology on enzyme activities involved in phthalate degradation. J. Microbiol. 47: 420-424. DOI |
8 | Morales D, Gutiérrez JM, Garcia-Celma M, Solans Y. 2003. A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir 19: 7196-7200. DOI |
9 | Patil P, Chattopadhyay A, Udupa S, Banerji A. 1993. Biotransformations with Rhizopus arrhizus: preparation of enantiomers of sulcatol. Biotechnol. Lett. 15: 367-372. |
10 | Roa Engel CA, Van Gulik WM, Marang L, Van der Wielen LA, Straathof AJ. 2011. Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme Microb. Technol. 48: 39-47. DOI |
11 | Salvi NA, Patil PN, Udupa SR, Banerji A. 1995. Biotransformations with Rhizopus arrhizus: preparation of the enantiomers of 1-phenylethanol and 1-(fo-, m- and pmethoxyphenyl) ethanols. Tetrahedron Asymmetry 6: 2287-2290. DOI |
12 | Vodnar DC, Dulf FV, Pop OL, Socaciu C. 2013. L(+)-Lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. Microb. Cell Fact. 12: 92. DOI |
13 | Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, et al. 2007. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS PharmSciTech 8: E12-E17. DOI |
14 | Wang P, Cai J-B, Ouyang Q, He J-Y, Su H-Z. 2011. Asymmetric biocatalytic reduction of 3,5-bis (trifluoromethyl) acetophenone to (1R)-[3,5-bis (trifluoromethyl) phenyl] ethanol using whole cells of newly isolated Leifsonia xyli HS0904. Appl. Microbiol. Biotechnol. 90: 1897-1904. DOI |
15 | Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma M. 2005. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 10: 102-110. DOI |
16 | Wang G, Huang D, Li Y, Wen J, Jia X. 2015. A metabolicbased approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae. Bioresour. Technol. 180: 119-127. DOI |
17 | Xu Q, Li S, Huang H, Wen J. 2012. Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol. Adv. 30: 1685-1696. DOI |
18 | Yang Z, Zeng R, Wang Y, Wang G, Yao S. 2007. Isolation of microbe for asymmetric reduction of prochiral aromatic ketone and its reaction characters. Front. Chem. Eng. China 1: 416-420. DOI |
19 | Yang ZH, Zeng R, Wang Y, Li W, Lv ZS. 2008. A complex process of the asymmetric reduction of prochiral aromatic ketone by yeast cell with the introduction of an organic solvent as the separation medium. Asia Pac. J. Chem. Eng. 3: 217-222. DOI |
20 | Zhang K, Yu C, Yang S-T. 2014. Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae. Process Biochem. 50: 173-179. DOI |
21 | Zhou Y, Du J, Tsao GT. 2000. Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Appl. Biochem. Biotechnol. 84: 779-789. DOI |
22 | Zhou Z, Du G, Hua Z, Zhou J, Chen J. 2011. Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresour. Technol. 102: 9345-9349. DOI |