Browse > Article
http://dx.doi.org/10.4014/jmb.1506.06043

Asymmetric Bioconversion of Acetophenone in Nano-Sized Emulsion Using Rhizopus oryzae  

Li, Qingzhi (College of Life Science and Agronomy, Zhoukou Normal University)
Shi, Yang (College of Life Science and Agronomy, Zhoukou Normal University)
He, Le (College of Life Science and Agronomy, Zhoukou Normal University)
Zhao, Hui (College of Chemistry and Chemical Engineering, Zhoukou Normal University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.1, 2016 , pp. 72-79 More about this Journal
Abstract
The fungal morphologies and pellet sizes were controlled in acetophenone reduction by Rhizopus oryzae. The acetophenone conversion and (S)-phenylethanol enantiomeric excesses (e.e.) reached the peak after 72 h of incubation when using pellets with 0.54 mm diameter, which showed an excellent performance compared with suspended mycelia, clumps, and pellets with 0.65 or 0.75 mm diameter. Furthermore, nano-sized acetophenone was used as a substrate to improve the performances of biotransformation work. The results showed that the conversion of nanometric acetophenone and (S)-phenylethanol e.e. reached the maximum (both >99%) after 32 h of incubation when using 0.54 mm diameter pellets, at least 24 h in advance of the control group. On the other hand, Tween 80 and 1, 2-propylene glycol showed low or no toxicity to cells. In conclusion, pellets and acetophenone nanoemulsions synergistically result in superior performances of acetophenone reduction.
Keywords
Acetophenone; bioreduction; conversion; enantiomeric excesses (e.e.); nanoemulsion; Rhizopus oryzae;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahmad N, Ramsch R, Llinàs M, Solans C, Hashim R, Tajuddin HA. 2014. Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems. Colloids Surf. B Biointerfeces 115: 267-274.   DOI
2 Botalova O, Schwarzbauer J, Frauenrath T, Dsikowitzky L. 2009. Identification and chemical characterization of specific organic constituents of petrochemical effluents. Water Res. 43: 3797-3812.   DOI
3 Dynesen J, Nielsen J. 2003. Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation. Biotechnol. Progr. 19: 1049-1052.   DOI
4 Lawrence MJ, Rees GD. 2000. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliver. Rev. 45: 89-121.   DOI
5 Fu YQ, Yin LF, Jiang R, Zhu HY, Ruan QC. 2015. Effects of calcium on the morphology of Rhizopus oryzae and L-lactic acid production, pp. 233-243. In Zhang TC, Nakajima M (eds.). Advances in Applied Biotechnology. Springer-Verlag Berlin Heidelberg, New York.
6 Gu C, Zhou Y, Liu L, Tan T, Deng L. 2013. Production of fumaric acid by immobilized Rhizopus arrhizus on net. Bioresour. Technol. 131: 303-307.   DOI
7 Kim Y-M, Song H-G. 2009. Effect of fungal pellet morphology on enzyme activities involved in phthalate degradation. J. Microbiol. 47: 420-424.   DOI
8 Morales D, Gutiérrez JM, Garcia-Celma M, Solans Y. 2003. A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir 19: 7196-7200.   DOI
9 Patil P, Chattopadhyay A, Udupa S, Banerji A. 1993. Biotransformations with Rhizopus arrhizus: preparation of enantiomers of sulcatol. Biotechnol. Lett. 15: 367-372.
10 Roa Engel CA, Van Gulik WM, Marang L, Van der Wielen LA, Straathof AJ. 2011. Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme Microb. Technol. 48: 39-47.   DOI
11 Salvi NA, Patil PN, Udupa SR, Banerji A. 1995. Biotransformations with Rhizopus arrhizus: preparation of the enantiomers of 1-phenylethanol and 1-(fo-, m- and pmethoxyphenyl) ethanols. Tetrahedron Asymmetry 6: 2287-2290.   DOI
12 Vodnar DC, Dulf FV, Pop OL, Socaciu C. 2013. L(+)-Lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. Microb. Cell Fact. 12: 92.   DOI
13 Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, et al. 2007. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS PharmSciTech 8: E12-E17.   DOI
14 Wang P, Cai J-B, Ouyang Q, He J-Y, Su H-Z. 2011. Asymmetric biocatalytic reduction of 3,5-bis (trifluoromethyl) acetophenone to (1R)-[3,5-bis (trifluoromethyl) phenyl] ethanol using whole cells of newly isolated Leifsonia xyli HS0904. Appl. Microbiol. Biotechnol. 90: 1897-1904.   DOI
15 Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma M. 2005. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 10: 102-110.   DOI
16 Wang G, Huang D, Li Y, Wen J, Jia X. 2015. A metabolicbased approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae. Bioresour. Technol. 180: 119-127.   DOI
17 Xu Q, Li S, Huang H, Wen J. 2012. Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol. Adv. 30: 1685-1696.   DOI
18 Yang Z, Zeng R, Wang Y, Wang G, Yao S. 2007. Isolation of microbe for asymmetric reduction of prochiral aromatic ketone and its reaction characters. Front. Chem. Eng. China 1: 416-420.   DOI
19 Yang ZH, Zeng R, Wang Y, Li W, Lv ZS. 2008. A complex process of the asymmetric reduction of prochiral aromatic ketone by yeast cell with the introduction of an organic solvent as the separation medium. Asia Pac. J. Chem. Eng. 3: 217-222.   DOI
20 Zhang K, Yu C, Yang S-T. 2014. Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae. Process Biochem. 50: 173-179.   DOI
21 Zhou Y, Du J, Tsao GT. 2000. Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Appl. Biochem. Biotechnol. 84: 779-789.   DOI
22 Zhou Z, Du G, Hua Z, Zhou J, Chen J. 2011. Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresour. Technol. 102: 9345-9349.   DOI