• 제목/요약/키워드: Nano stage

검색결과 283건 처리시간 0.057초

CAE를 이용한 나노 임프린팅 스테이지의 진동 해석 (Vibration Analysis of a Nano Imprinting Stage Using CAE)

  • 이강욱;이재우;이성훈;임시형;정재일;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.579-584
    • /
    • 2008
  • A nano-imprinting stage has been widely used in various fields of nanotechnology. In this study, an analysis method of a nano-imprinting stage machine using FEM and flexible multi-body vibration has been presented. The simulation using CAE for the imprinting machine is to analyze vibration characteristics of 3-axis nano-imprinting stage and 4-axis nano-imprinting stage. Structural components such as the upper plate have been modeled with finite elements to analyze flexibility effects during the precision stage motion. In this paper flexible multi-body dynamic simulation is executed to support robust design of the precision stage mechanism.

  • PDF

Self Displacement Sensing (SDS) Nano Stage

  • Choi, Soo-Chang;Park, Jeong-Woo;Kim, Yong-Woo;Lee, Deug-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.70-74
    • /
    • 2007
  • This paper describes the development of a nano-positioning system for nanoscale science and engineering. Conventional positioning systems, which can be expensive and complicated, require the use of laser interferometers or capacitive transducers to measure nanoscale displacements of the stage. In this study, a new self-displacement sensing (SDS) nano-stage was developed using mechanical magnification of its displacement signal. The SDS nano-stage measured the displacement of its movement using a position-sensitive photodiode (PSPD), a laser source, and a hinge-connected rotating mirror plate. A beam from a laser diode was focused onto the middle of the plate with the rotating mirror. The position variation of the reflected beam from the mirror rotation was then monitored by the PSPD. Finally, the PSPD measured the amplified displacement as opposed to the actual movement of the stage via an optical lever mechanism, providing the ability to more precisely control the nanoscale stage. The displacement amplification process was modeled by structural analysis. The simulation results of the amplification ratio showed that the distance variation between the PSPD and the mirror plate as well as the length L of the mirror plate could be used as the basic design parameters for a SDS nano-stage. The PSPD was originally designed for a total travel range of 30 to 60 mm, and the SDS nano-stage amplified that range by a factor of 15 to 25. Based on these results, a SDS nano-stage was fabricated using principle of displacement amplification.

유연성을 고려한 4축 나노임프린팅 스테이지의 동적 해석 (Dynamic Analysis of a 4-Axis Nano Imprinting Stage Mechanism considering Flexibility)

  • 박성빈;정재일;임홍재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.844-849
    • /
    • 2008
  • A nano-imprinting stage has been widely used in various fields of nano-technology. In this study, A 4-axis nano-imprinting stage is modeled with using the 3D-CAD Tool. Structural components such as an upper-plate, bearings and cross-roller-guides are modeled with finite elements to analyze flexibility effect during the precision stage motion. In addition, Dynamic analysis is executed to reproduce actual motion of 4-axis nano imprinting stage.

  • PDF

지지방식의 차이에 따른 나노 임프린팅 스테이지의 진동 특성 비교 (The vibrational characteristics of nano-imprinting stages with respect to supporter types)

  • 이성훈;박성빈;이강욱;정재일;임홍재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.948-954
    • /
    • 2008
  • In this study, vibrational characteristics of two nano-imprinting stages is analyzed and compared with respect to the methodology to support the upper-plate of the stage. The first type of the stage has three supporters at each corners of the stage and one thrust bearing at the center of the stage. The other type of the stage has four supporter in each corner of the stage without a thrust bearing. The FEM software with flexible modeling is used for the normal mode analysis. The result depicts the difference of vibrational characteristics caused by the difference of support methods. The design criteria for the precision nano-imprinting stage is also discussed.

  • PDF

차세대 리소그라피 시스템을 위한 2축 나노스테이지의 시뮬레이션 툴 구축 (Development of a Simulation Tool of a Two-Axis Nano Stage for a New Generation Lithography System)

  • 유건모;정종철;정정주;허건수
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1541-1548
    • /
    • 2004
  • A nano-stage simulation tool is developed for an advanced E-beam lithography system. Even if piezo-actuators are believed to be compatible fer the E-beam lithograpy system it is difficult to predict their characteristics due to their nonlinearities such as hysteresis and creep. In this paper, the nonlinear properties are modeled for a piezo-actuator by considering the voltage range and speed variations. The hysteresis is described as the first order differential equation with 24 sets of parameters and the creep is modeled as a time-dependent logarithmic function with 2 sets of a parameter. A two-axis nano stage with piezo-actuators are investigated for realizing nano scale motions. The characteristics of flexure guide mechanisms are analyzed based on the finite element method using the ANSYS software. The simulation tool for the nano stage is constructed by using the RecurDyn software. The dynamic response of the nano stage is obtained in simulations and compared with the experimental data.

Min-Max 알고리즘을 이용한 피에조 구동형 스테이지의 최적설계 및 성능평가 (Optimal Design and Performance Evaluation of PZT-driven Stage Using Min-Max Algorithm)

  • 최기봉;한창수
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.130-136
    • /
    • 2005
  • This paper presents an optimal design and the performance evaluation of two-axis nano positioning stage with round notched flexure hinges. A flexure hinge mechanism with round notched flexure hinges is to guide the linear motions of a moving plate in the nano positioning stage. A Min-Max algorithm is applied to the design of the flexure hinge mechanism for nano positioning stage. In the design process, the structure of the flexure hinge mechanism is fixed, then the radius of a round hole and the width of two round holes are chosen as design variables, and finally the do sign variables are calculated by the Min-Max algorithm. The machined flexure hinge mechanism, stack type PZTs for actuation and capacitance type displacement sensors for position measurement are assembled into the nano positioning stage. The experimental results of the manufactured nano positioning stage show the first modal resonance frequency of 197 Hz, the operating range of 40 um, and the resolution of 3 nm.

나노 패턴 장비용 컴플라이언스 스테이지 (Compliant Stage for Nano Patterning Machine)

  • 최기봉;이재종
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1065-1068
    • /
    • 2003
  • The nano imprint process is one of the next generation lithography has been mentioned as one of major nanoreplication techniques because it is simple process, low cost, high replication fidelity and relatively high throughput. This process requires a surface contact between a template with patterns and a wafer on a stage. After contact, the vertical moving the template to the wafer causes some directional motions of the stage. Thus the stage must move according to the motions of the template to avoid the damage of the transferred patterns on the wafer. This study is to develop the wafer stage with a passive compliance to overcome the damage. This stage is designed with the concept like that it has a monolithic, symmetry and planar 6-DOF mechanism.

  • PDF

CAE를 이용한 나노 임프린트 스테이지의 동적 거동해석 (Dynamic Analysis of a Nano Imprinting Stage Using CAE)

  • 이강욱;이민규;이재우;임시형;신동훈;장시열;정재일;임홍재
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.211-217
    • /
    • 2007
  • A nano-imprinting stage has been widely used in various fields of nanotechnology. In this study, an analysis method of a nano-imprinting stage machine using FEM and flexible multi-body kinematics and dynamics has been presented. We have developed a virtual imprinting machine to evaluate the prototype design in the early design stage. The simulation using CAE for the imprinting machine is not only to analyze static and dynamic characteristics of the machine but also to determine design parameters of the components for the imprinting machine, such as dimensions and specifications of actuators and sensors. Structural components as the upper plate, the rotator, the shaft and the translator have been modeled with finite elements to analyze flexibility effects during the precision stage motion. In this paper flexible multi-body dynamic simulation is executed to support robust design of the precision stage mechanism. In addition, we made the 4-axis stage model to compare the dynamic behavior with that of 3-axis stage model.

진공용 나노스테이지 개발 (Development of Nano Stage for Ultra High Vacuum)

  • 홍원표;강은구;이석우;최헌종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.472-477
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modem products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of mastless fabrication. Therefore, the application of focused ion beam(FIB) technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few ${\mu}{\textrm}{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and l0nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about 1$\times$10$^{-5}$ pa. This paper presents the concept of nano stages and the discussion of the material treatment for ultra tush vacuum.

  • PDF