• 제목/요약/키워드: Nano pattern

검색결과 479건 처리시간 0.028초

Direct Patterning of Self Assembled Nano-Structures of Block Copolymers via Electron Beam Lithography

  • Yoon Bo Kyung;Hwang Wonseok;Park Youn Jung;Hwang Jiyoung;Park Cheolmin;Chang Joonyeon
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.435-440
    • /
    • 2005
  • This study describes a method where the match of two different length scales, i.e., the patterns from self-assembled block copolymer (<50 nm) and electron beam writing (>50 nm), allow the nanometer scale pattern mask. The method is based on using block copolymers containing a poly(methyl methacrylate) (PMMA) block, which is subject to be decomposed under an electron beam, as a pattern resist for electron beam lithography. Electron beam on self assembled block copolymer thin film selectively etches PMMA microdomains, giving rise to a polymeric nano-pattern mask on which subsequent evaporation of chromium produces the arrays of Cr nanoparticles followed by lifting off the mask. Furthermore, electron beam lithography was performed on the micropatterned block copolymer film fabricated by micro-imprinting, leading to a hierarchical self assembled pattern where a broad range of length scales was effectively assembled, ranging from several tens of nanometers, through submicrons, to a few microns.

PS-PB-PS 삼블럭 공중합체 박막형판에서의 금의 자기응집에 의한 Nano-Scale 패턴형성 (Nano-Scale Patterning by Gold Self-Assembly on PS-PB-PS Triblock Copolymer Thin Film Templates)

  • Kim, G.;Libera, M.
    • Elastomers and Composites
    • /
    • 제34권1호
    • /
    • pp.45-52
    • /
    • 1999
  • 본 논문에서는 미세 상분리된 블럭 공중합체 박막의 특이상에서 금 입자들이 어떻게 자기응집(self assemble) 되고 잘 배열된 패턴을 형성하는지를 살펴보았다. 본 연구에서는 원통형 모폴로지를 갖는 PS-PB-PS 삼블럭 공중합체(30wt% PS) 박막(${\sim}100nm$)을 0.1wt% 톨루엔 용액으로부터 캐스팅하여 고분자 박막 형판(template)으로 사용하였다. 각각의 상이한 용매 증발조건으로부터 PB matrix내에 수평배열 PS cylinder와 수직 PS cylinder를 함께 갖는 막이 얻어졌다. 블럭 공중합체박막의 표면 및 bulk 몰폴로지를 살펴보기 위하여 단면투과전자현미경(TEM)을 사용하였다. Nano-scale 패턴을 얻기 위하여는 소량의 금입자를 블럭 공중합체 박막상에 증발시켰다. 캐스팅된 상태 그 대로의 박막형판이 사용되어질때 금입자들은 표면 장력이 적은 PB상에 우선적으로 자기응집(self as-semble)하여 비교적 잘 배열된 nano-scale의 패턴을 형성하였다. 그러나 열처리(annealing)에 의하여 표면장력이 적은 PB-rich충이 형성된 후에는 금입자의 자기응집에 의한 패턴은 관찰되지 않았다.

  • PDF

전자빔을 이용한 미세형상 패턴성형용 S/W의 개발

  • 강재훈;송준엽;이승우;박화영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.243-243
    • /
    • 2004
  • 상용화된 주사식 전자현미경(SEM)을 기본 구조로 하는 가공 시스템을 구축하여 전자빔(Electron beam)을 이용한 초미세 패턴(Nano pattern) 등 형상의 직접 성형, 혹은 직접 묘화(Direct writing) 가공을 수행하기 위해서는 크게 분류하여 연속적으로 스캐닝되는 전자빔을 요구에 따라 적절하게 극히 짧은 시간 내에 개폐하는 빔 블랭커(Beam blanker)와 효율적으로 초미세 패턴 등의 형상을 설계ㆍ가공하기 위한 전용 S/W의 두 가지 요소가 반드시 적용되어야 한다.(중략)

  • PDF

나노인덴테이션 공정을 이용하여 극미세 패턴을 제작하기 위한 나노변형의 유한요소해석(II) (Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nanoidentation Process (II))

  • 이정우;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic re cover and pile-up were proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1 -l0nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

Electric Circuit Fabrication Technology using Conductive Ink and Direct Printing

  • 정재우;김용식;윤관수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • For the micro conductive line, memory device fabrication process use many expensive processes such as manufactur-ing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because nano-metal particles contained inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as FPCB, PCB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line on flexible PCB substrate for the next generation electronic circuit using Ag nano-particles contained ink. To improve the line tolerance on flexible PCB, metal lines are fabricated by sequential prinitng method. Sequential printing method has vari-ous merits about fine, thick and high resolution pattern lines without bulge.

  • PDF

나노 사이즈 hot embossing 공정시 폴리머의 영향 (Effect of polymer substrates on nano scale hot embossing)

  • Lee, Jin-Hyung;Kim, Yang-sun;Park, Jin-goo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.71-71
    • /
    • 2003
  • Hot embossing has been widely accepted as an alternative to photolithography in generating patterns on polymeric substrates. The optimization of embossing process should be accomplished based on polymer substrate materials. In this paper, the effect of polymer substrates on nano scale hot embossing process was studied. Silicon molds with nano size patterns were fabricated by e-beam direct writing. Molds were coated with self-assembled monolayer (SAM) of (1, 1, 2.2H -perfluorooctyl)-trichlorosilane to reduce the stiction between mold and substrates. For an embossing, pressure of 55, 75 bur, embossing time of 5 min and temperature of above transition temperature were peformed. Polymethylmethacrylates (PMMA) with different molecular weights of 450,000 and 950,000, MR-I 8010 polymer (Micro Resist Technology) and polyaliphatic imide copolymer were applied for hot embossing process development in nano size. These polymers were spun coated on the Si wafer with the thickness between 150 and 200 nm. The nano size patterns obtained after hot embossing were observed and compared based on the polymer properties by scanning electron microscopy (SEM). The imprinting uniformity dependent on the Pattern density and size was investigated. Four polymers have been evaluated for the nanoimprint By optimizing the process parameters, the four polymers lead to uniform imprint and good pattern profiles. A reduction in the friction for smooth surfaces during demoulding is possible by polymer selection.

  • PDF

자연모사기반 나노-마이크로패턴의 광 회절 및 간섭에 의한 투명기판의 구조색 구현 (Bio-inspired Structural Colors of Transparent Substrate based on Light Diffraction and Interference on Microscale and Nanoscale Structures)

  • 박용민;김병희;서영호
    • 산업기술연구
    • /
    • 제39권1호
    • /
    • pp.33-39
    • /
    • 2019
  • This paper addresses effects of nanoscale structures on structural colors of micropatterned transparent substrate by light diffraction. Structural colors is widely investigated because they present colors without any chemical pigments. Typically structural colors is presented by diffraction of light on a micropatterned surface or by multiple interference of light on a surface containing a periodic or quasi-periodic nano-structures. In this paper, each structural colors induced by quasi-periodic nano-structures, periodic micro-structures, and nano/micro dual structures is measured in order to investigate effects of nanoscale and microscale structures on structural colors in the transparent substrate. Using pre-fabricated pattern mold and hot-embossing process, nanoscale and microscale structures are replicated on the transparent PMMA(Poly methyl methacrylate) substrate. Nanoscale and microscale pattern molds are prepared by anodic oxidation process of aluminum sheet and by reactive ion etching process of silicon wafer, respectively. Structural colors are captured by digital camera, and their optical transmittance spectrum are measured by UV/visible spectrometer. From experimental results, we found that nano-structures provide monotonic colors by multiple interference, and micro-structures induce iridescent colors by diffraction of light. Structural colors is permanent and unchangeable, thus it can be used in various application field such as security, color filter and so on.

Optical Image Encryption Technique Based on Hybrid-pattern Phase Keys

  • Sun, Wenqing;Wang, Lei;Wang, Jun;Li, Hua;Wu, Quanying
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.540-546
    • /
    • 2018
  • We propose an implementation scheme for an optical encryption system with hybrid-pattern random keys. In the encryption process, a pair of random phase keys composed of a white-noise phase key and a structured phase key are positioned in the input plane and Fourier-spectrum plane respectively. The output image is recoverable by digital reconstruction, using the conjugate of the encryption key in the Fourier-spectrum plane. We discuss the system encryption performance when different combinations of phase-key pairs are used. To measure the effectiveness of the proposed method, we calculate the statistical indicators between original and encrypted images. The results are compared to those generated from a classical double random phase encoding. Computer simulations are presented to show the validity of the method.

50nm급 불연속 나선형 패턴의 마스터 제작 (Fabrication of Master for a Spiral Pattern in the Order of 50nm)

  • 오승훈;최두선;제태진;정명영;유영은
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.134-139
    • /
    • 2008
  • A spirally arrayed nano-pattern is designed as a model pattern for the next generation optical storage media. The pattern consists off types of embossed rectangular dot, which are 50nm, 100nm, 150nm and 200nm in length and 50nm in width. The height of the dot is designed to be 50nm. The pitch of the spiral track of the pattern is 100nm. A ER(Electron resist) master for this pattern is fabricated by e-beam lithography process. The ER is first spin-coated to be 50nm thick on a Si wafer and then the model pattern is written on the coated ER layer by e-beam. After developing this pattern written wafer in the solution, a ER pattern master is fabricated. The most conventional e-beam machine can write patterns in orthogonal way, so we made our own pattern generator which can write the pattern in circular or spiral way. This program generates the patterns to be compatible with the e-beam machine from Raith(Raith 150). To fabricate 50nm pattern master precisely, a series of experiments were done including the design compensation for the pattern size, optimization of the dose, acceleration voltage, aperture size and developing. Through these experiments, we conclude that the higher accelerating voltages and smaller aperture size are better for mastering the nano pattern which is in order of 50nm. With the optimized e-beam lithography process, a spiral arrayed 50nm pattern master adopting PMMA resist was fabricated to have dimensional accuracy over 95% compared to the designed. Using this pattern master, a metal pattern stamp will be fabricated by Ni electro plating for injection molding of the patterned plastic substrate.

나노임프린팅 기술을 이용한 유연성 브래그 반사 광도파로 소자 (Bragg Reflecting Waveguide Device Fabricated on a Flexible Substrate using a Nano-imprinting Technology)

  • 김경조;이정아;오민철
    • 한국광학회지
    • /
    • 제18권2호
    • /
    • pp.149-154
    • /
    • 2007
  • 저가의 소자 개발이 가능한 나노임프린팅 공정을 도입하여 510 nm 주기의 브래그 격자 구조를 가지는 폴리머 광도파로 소자를 제작하였다. 폴리머 격자 광소자의 온도 의존성을 감소시키기 위한 방법으로 플라스틱 박막으로 이루어진 유연성 기판상에 브래그 격자를 제작하는 것이 필요하다. 임프린팅 공정을 손쉽게 수행하기 위한 광도파로 구조를 채택하였으며, 코아와 클래딩의 굴절률이 각각 1.540, 1.430인 폴리머를 이용하여 코아 두께가 $3{\mu}m$인 단일모드 광도파로 구조를 얻을 수 있었다. 유연성 기판 브래그 격자 광도파로 소자의 특성을 Si기판 브래그 격자 광도파로 소자와 비교하여 관측한 결과, 유연성 기판 도입에 따른 브래그 반사 소자의 성능 저하는 나타나지 않았다.