DOI QR코드

DOI QR Code

Bragg Reflecting Waveguide Device Fabricated on a Flexible Substrate using a Nano-imprinting Technology

나노임프린팅 기술을 이용한 유연성 브래그 반사 광도파로 소자

  • Kim, Kyung-Jo (Nano-Bio Photonics Lab., Department of Electronics Engineering, Pusan National University) ;
  • Yi, Jeong-Ah (Nano-Bio Photonics Lab., Department of Electronics Engineering, Pusan National University) ;
  • Oh, Min-Cheol (Nano-Bio Photonics Lab., Department of Electronics Engineering, Pusan National University)
  • 김경조 (부산대학교 전자공학과 컴퓨터및정보통신연구소 나노바이오광소자연구실) ;
  • 이정아 (부산대학교 전자공학과 컴퓨터및정보통신연구소 나노바이오광소자연구실) ;
  • 오민철 (부산대학교 전자공학과 컴퓨터및정보통신연구소 나노바이오광소자연구실)
  • Published : 2007.04.25

Abstract

Bragg reflecting waveguide devices have been fabricated on a flexible polymer substrate utilizing a post lift-off process which could Provide excellent uniformity of grating Patterns on Plastic film. The 510 m Period Bragg grating pattern is made by two methods. In the first sample the grating is fabricated by exposing the laser interference pattern on a photoresist, and then it is inscribed by $O_2$ plasma etching. The grating pattern of the second sample is formed by a PDMS soft mold imprinting process. The selective adhesion property of SU-8 material for Au and Si surfaces is utilized to prepare a 100-mm thick plastic substrate. Single mode waveguide is fabricated on the plastic substrate using polymer materials with refractive indices of 1.540 and 1.430 for the core and the cladding layers, respectively. The Bragg grating on Plastic substrate does not show any degradation in its spectral response compared to the reference sample made on a silicon wafer.

저가의 소자 개발이 가능한 나노임프린팅 공정을 도입하여 510 nm 주기의 브래그 격자 구조를 가지는 폴리머 광도파로 소자를 제작하였다. 폴리머 격자 광소자의 온도 의존성을 감소시키기 위한 방법으로 플라스틱 박막으로 이루어진 유연성 기판상에 브래그 격자를 제작하는 것이 필요하다. 임프린팅 공정을 손쉽게 수행하기 위한 광도파로 구조를 채택하였으며, 코아와 클래딩의 굴절률이 각각 1.540, 1.430인 폴리머를 이용하여 코아 두께가 $3{\mu}m$인 단일모드 광도파로 구조를 얻을 수 있었다. 유연성 기판 브래그 격자 광도파로 소자의 특성을 Si기판 브래그 격자 광도파로 소자와 비교하여 관측한 결과, 유연성 기판 도입에 따른 브래그 반사 소자의 성능 저하는 나타나지 않았다.

Keywords

References

  1. Min-Cheol Oh, Wol-Yon Hwang, Young-Ouk Noh, Hyung- Jong Lee, and Seon-Gyu Han, 'Reliable low-cost polymeric optical waveguide device,' OECC/COIN2004, Yokkohama Japan, 14F2-3, pp. 558-559, 2004
  2. Min-Cheol Oh, Myung-Hyun Lee, Joo-Heon Ahn, Hyung-Jong Lee, and Seon Gyu Han, 'Polymeric wavelength filters with polymer gratings,' Appl. Phys. Lett., Vol. 72, No. 25, pp. 1559-1561, 1998 https://doi.org/10.1063/1.121114
  3. Seh-Won Ahn, Ki-Dong Lee, Do-Hwan Kim, and Sang- Shin Lee, 'Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,' IEEE Photon. Technol. Lett., Vol. 17, No. 10, pp. 2122-2124, 2005 https://doi.org/10.1109/LPT.2005.854404
  4. W.-C. Chuang, C.-T. Ho, and W.-C. Wang, 'Fabrication of a high-resolution periodical structure using a replication process,' Optics Express, Vol. 13, No. 18, pp. 6685-6692, 2005 https://doi.org/10.1364/OPEX.13.006685
  5. Hyun-Chae Song, Min-Cheol Oh, Seh-Won Ahn, William H. Steier, Harold R. Fetterman, and Cheng Zhang, 'Flexible low-voltage electro-optic polymer modulators,' Appl. Phys. Lett., Vol. 82, No. 25, pp. 4432-4434, 2003 https://doi.org/10.1063/1.1586474
  6. Min-Cheol Oh, William H. Steier, Hyun-Chae Song, and She-Won Ahn, 'Low-voltage flexible optic polymer modulators,' US patent, US2005249445, 2005
  7. G. T. Paloczi, Y. Huang, and A. Yariv, 'Free-standing allpolymer microring resonator optical filter,' Electron. Lett., Vol. 39, No. 23, 2003 https://doi.org/10.1049/el:20031090
  8. Sung-Hyun Nam, Jae-Wook Kang, and Jang-Joo Kim, 'Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates,' Appl. Phys. Lett., Vol. 87, 233504, 2005 https://doi.org/10.1063/1.2140469
  9. U. Fisher, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petterman, '0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,' IEEE Photon. Technol. Lett., vol. 8, no. 5, pp. 647-648, 1996 https://doi.org/10.1109/68.491567