• 제목/요약/키워드: Nano mold

검색결과 201건 처리시간 0.023초

초정밀 평삭가공과 마이크로 펀칭가공을 위한 하이브리드 가공장비 및 공정기술 개발 (Development of Hybrid Machining System and Hybrid Process Technology for Ultra-fine Planing and Micro Punching)

  • 김한희;전은채;차진호;이재령;김창의;최환진;제태진;최두선
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.10-16
    • /
    • 2013
  • Ultra-fine planing and micro punching are separately used for improving surface roughness and machining dot patterns, respectively, of metal molds. If these separate machining processes are applied for machining of identical molds, there could be an aligning mismatch between the machine tool and the mold. A hybrid machining system combining ultra-fine planing and micro punching was newly developed in this study in order to solve this mismatch; hybrid process technology was also developed for machining dot patterns on a mirror surface of a metal mold. The hybrid machining system has X, Y, and Z axes, and a cam axis for ultra-fine planing. The cam axis and attachable and removable solenoid actuators for micro punching can make large and small sizes of dot patterns, respectively. Ultra-fine planing was applied in the first place to improve the surface roughness of a metal mold; the measured surface roughness was about 20nm. Then, micro punching was applied to machine dot patterns on the same mold. It was possible to control the diameter of the dot patterns by changing the input voltage of the solenoid actuator. Before machining, severe inhomogeneous plastic deformation around the machined dot patterns was also removed by annealing heat treatment. Therefore, it was verified that metal molds with dots patterns for optical products can be machined using a hybrid machining system and the hybrid process technology developed in this study.

펠티어 소자를 이용한 사출 금형의 온도제어 (Active Control of Injection Mold Temperature using the Peltier Device)

  • 조창연;신홍규;박동영;홍남표;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.183-186
    • /
    • 2007
  • The injection molding process has high accuracy and good reproducibility that are essential for mass production at low cost. Conventional molding processes typically use the water-based mold heating and air cooling methods. However, in the nano injection molding processes, this semi-active mold temperature control results in the several defects such as air-flow mark, non-fill, sticking and tearing, etc. Therefore, in order to control temperature of the molds actively and improve the quality of the molded products, the novel nano injection molding system, which uses active heating and cooling method, has been introduced. By using the Peltier devices, the temperature of locally adiabatic molds can be controlled dramatically and the quality of the molded patterns can be improved.

  • PDF

롤러 가압 임프린트 공정에서 잔류막 두께 예측에 관한 연구 (A Study on the expectation of residual layer thickness in roller pressing imprint process)

  • 조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.104-109
    • /
    • 2013
  • In order to apply nano imprint technology in large area process, roller pressing is promising because of its low cost and high productivity. When pressing mold by roller, liquid resin is locally squeezed between mold and substrate. In this study, the main focus is to understand which process parameter affects residual layer. To do this, a simple analytical model was introduced. Especially, we consider the aspect ratio of patterns as essential cause of variation of the thickness in the equation. As a result, when the aspect ratio of pattern in the mold increases, the thickness of residual layer also increases. In conclusion, we show that the uniformity of residual layer could be accomplished by the control of velocity and pressing force in roller pressing imprint process.

100nm 급 Pattern 전사성 향상을 위한 나노 사출 성형 공정 최적화 연구 (Study on Optimization of Nano Injection Molding Process for Improving Transcription of 100nm-level Pattern)

  • 이재숙;이해곤;손성기;이종훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.81-85
    • /
    • 2006
  • In this study, we have been examined nano Injection Molding process which can improve transcription of 100nm-level pattern. We changed the various parameter (temperature of injection mold, clamp force, temperature of nozzle) which can be influence for improving transcription. And we measured and analyzed shapes of 100nm-level pattern by Automic Force Microscope for proving transcription. We made the Blu-ray Disc sample for proving transcription. And we measured HF-Signal and jitter. As a result, when the temperature of mold is more than $120^{\circ}C$ and the clamp force is more than 10 ton, We reached over 95 percent of transcription compared with stamper pattern. And we reached in-spec. value for HF-Signal and Jitter. Then we reached over 95 percent of transcription compared with stamper pattern.

  • PDF

펠티어 소자를 이용한 나노 사출 금형의 능동형 온도 제어 (A method for Thermal Control of Nano Injection Molding using the Peltier Devices)

  • 신홍규;권종태;홍남표;서영호;김병희
    • 소성∙가공
    • /
    • 제17권5호
    • /
    • pp.337-342
    • /
    • 2008
  • The injection molding process has high accuracy and good reproducibility that are essential for mass production at low cost. Conventional molding processes typically use the water-based mold heating and air cooling methods. However, in the nano injection molding processes, this semi-active mold temperature control results in the several defects such as air-flow mark, non-fill, sticking and tearing, etc. In order to actively control temperature of the molds and effectively improve the quality of the molded products, the novel nano injection molding system, which uses active heating and cooling method, has been introduced. By using the Peltier devices, the temperature of locally adiabatic molds can be controlled dramatically and the quality of the molded patterns can be improved.

광자결정 도파로 성형용 PDMS 스탬프 제작 (PDMS Stamp Fabrication for Photonic Crystal Waveguides)

  • 오승훈;최두선;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.153-158
    • /
    • 2007
  • Recently nano imprint lithography to fabricate photonic crystal on polymer is preferred because of its simplicity and short process time and ease of precise manufacturing. But, the technique requires the precise mold as an imprinting tool for good replication. These molds are made of the silicon, nickel and quartz. But this is not desirable due to complex fabrication process, high cost. So, we describe a simple, precise and low cost method of fabricating PDMS stamp to make the photonic crystals. In order to fabricate the PDMS mold, we make the original pattern with designed hole array by finding the optimal electron beam writing condition. And then, we have tried to fabricate PDMS mold by the replica molding with ultrasonic vibration and pressure system. We have used the cleaning process to solve the detaching problem on the interface. Using these methods, we acquired the PDMS mold for photonic crystals with characteristics of a good replication. And the accuracy of replication shows below 1% in 440nm at diameter and in 610nm at lattice constant by dimensional analysis by SEM and AFM.

나노임프린트 리소그래피 적용을 위한 CHF3 플라즈마를 이용한 실리콘 몰드 표면 처리 특성 (A Study of the Silicon Mold Surface Treatment Using CHF3 Plasma for Nano Imprint Lithography)

  • 김용근;김재현;유반석;장지수;권광호
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.790-793
    • /
    • 2011
  • In this study, the surface modification for a silicon(Si) mold using $CHF_3$ inductively coupled plasma(ICP). The conditions under that plasma was treated a input ICP power 600 W, an operating gas pressure of 10 mTorr and plasma exposure time of 30 sec. The Si mold surface became hydrophobic after plasma treatment in order to $CF_x$(X= 1,2,3) polymer. However, as the de-molding process repeated, it was investigated that the contact angle of Si surface was decreased. So, we attempted to investigate the degradation mechanism of the accurate pattern transfer with increasing the count of the de-molding process using scanning electron microscope (SEM), contact angle, and x-ray photoelectron spectroscopy (XPS) analysis of Si mold surface.

선택적 유도가열을 사용한 사출금형의 국부가열기술 (Local Heating of an Injection Mold using Selective Induction Heating)

  • 도범석;박정민;엄혜주;박근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1119-1123
    • /
    • 2008
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a noncontact procedure. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has difficulty in efficient mold temperature control due to the restriction of an induction coil design suitable for the given mold shape. The present study proposed a localized mold heating method by means of selective use of mold material. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The feasibility of the proposed heating method is investigated through an experimental measurement in terms of the heating efficiency on the localized mold surface.

  • PDF

고주파 유도가열을 사용한 급속 금형가열에 관한 연구 (A Study on Rapid Mold Heating System using High-Frequency Induction Heating)

  • 정희택;윤재호;박근;권오경
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

금속 나노 스탬퍼 점착방지막으로서의 자기조립 단분자막 특성 연구 (Study on Properties of Self-Assembled Monolayer as Anti-adhesion Layer on Metallic Nano Stamper)

  • 최성우;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.367-370
    • /
    • 2003
  • In this study, application of SAM (self-assembled monolayer) to nano replication process as an anti-adhesion layer was presented to reduce the surface energy between the nano mold and the replicated polymeric nano patterns. The electron beam lithography was used for master nano patterns and the electorforming process was used to fabricate the nickel nano stamper. Alkanethiol SAM as an anti-adhesion layer was deposited on metallic nano stamper using solution deposition method. To analyze wettability and adhesion force of SAM, contact angle and LFM (Lateral Force Microscopy) were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. It was found that the surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF