DOI QR코드

DOI QR Code

A Study of the Silicon Mold Surface Treatment Using CHF3 Plasma for Nano Imprint Lithography

나노임프린트 리소그래피 적용을 위한 CHF3 플라즈마를 이용한 실리콘 몰드 표면 처리 특성

  • Kim, Young-Keun (Department of Control and Instrumentation Engineering, Korea University) ;
  • Kim, Jae-Hyun (Department of Control and Instrumentation Engineering, Korea University) ;
  • You, Ban-Seok (Department of Control and Instrumentation Engineering, Korea University) ;
  • Jang, Ji-Su (Department of Control and Instrumentation Engineering, Korea University) ;
  • Kwon, Kwang-Ho (Department of Control and Instrumentation Engineering, Korea University)
  • 김용근 (고려대학교 제어계측공학과) ;
  • 김재현 (고려대학교 제어계측공학과) ;
  • 유반석 (고려대학교 제어계측공학과) ;
  • 장지수 (고려대학교 제어계측공학과) ;
  • 권광호 (고려대학교 제어계측공학과)
  • Received : 2011.07.20
  • Accepted : 2011.09.22
  • Published : 2011.10.01

Abstract

In this study, the surface modification for a silicon(Si) mold using $CHF_3$ inductively coupled plasma(ICP). The conditions under that plasma was treated a input ICP power 600 W, an operating gas pressure of 10 mTorr and plasma exposure time of 30 sec. The Si mold surface became hydrophobic after plasma treatment in order to $CF_x$(X= 1,2,3) polymer. However, as the de-molding process repeated, it was investigated that the contact angle of Si surface was decreased. So, we attempted to investigate the degradation mechanism of the accurate pattern transfer with increasing the count of the de-molding process using scanning electron microscope (SEM), contact angle, and x-ray photoelectron spectroscopy (XPS) analysis of Si mold surface.

Keywords

References

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol., B14, 4129 (1996).
  2. D. Y. Khang, H. Kang, T. I. Kim, and H. H. Lee, Nano Lett., 4, 633 (2004). https://doi.org/10.1021/nl049887d
  3. H. C. Scheer, N. Bogdanski, M. Wissen, T. Konishi, and Y. Hirai, J. Vac. Sci. Technol., B23, 2963 (2005).
  4. T. Haatainen, T. Makela, J. Ahopelto, and Y. Kawaguchi, Microelectron. Eng., 86, 2293 (2009). https://doi.org/10.1016/j.mee.2009.04.020
  5. T. Glinsner, T. Veres, G. Kreindl, E. Roy, K. Morton, T. Wieser, C. Thanner, D. Treiblmayr, R. Miller, and P. Lindner, Microelectron. Eng., 87 1037 (2010). https://doi.org/10.1016/j.mee.2009.11.098
  6. Y. J. Weng, Y. C. Weng, S. Y. Yang, and J. L. Wong, Polym. Adv. Technol., 19, 1704 (2008). https://doi.org/10.1002/pat.1164
  7. D. Truffier-Boutry, A. Beaurain, R. Galand, B. Pelissier, J. Boussey, and M. Zelsmann, Microelectron. Eng., 87, 122 (2010). https://doi.org/10.1016/j.mee.2009.06.004
  8. F. Hamouda, G. Barbillon, S. Held a, G. Agnus, P. Gogol, T. Maroutian, S. Scheuring, and B. Bartenlian, Microelectron. Eng., 86, 583 (2009). https://doi.org/10.1016/j.mee.2008.11.086
  9. A. Efremov, N. K. Min, J. Jeong, Y. Kim, and K. H. Kwon, Plasma Sources Sci. Technol., 19, 045020 (2010). https://doi.org/10.1088/0963-0252/19/4/045020
  10. D. Y. Chu and J. K. Thomas, Macromolecules, 23, 2217 (1990). https://doi.org/10.1021/ma00210a016
  11. H. H. Park, K. H. Kwon, J. L. Lee, K. S. Suh, O. J. Kwon, K. I. Cho, and S. C. Park, J. Appl. Phys., 76, 4596 (1994). https://doi.org/10.1063/1.357294