Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.10.790

A Study of the Silicon Mold Surface Treatment Using CHF3 Plasma for Nano Imprint Lithography  

Kim, Young-Keun (Department of Control and Instrumentation Engineering, Korea University)
Kim, Jae-Hyun (Department of Control and Instrumentation Engineering, Korea University)
You, Ban-Seok (Department of Control and Instrumentation Engineering, Korea University)
Jang, Ji-Su (Department of Control and Instrumentation Engineering, Korea University)
Kwon, Kwang-Ho (Department of Control and Instrumentation Engineering, Korea University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.10, 2011 , pp. 790-793 More about this Journal
Abstract
In this study, the surface modification for a silicon(Si) mold using $CHF_3$ inductively coupled plasma(ICP). The conditions under that plasma was treated a input ICP power 600 W, an operating gas pressure of 10 mTorr and plasma exposure time of 30 sec. The Si mold surface became hydrophobic after plasma treatment in order to $CF_x$(X= 1,2,3) polymer. However, as the de-molding process repeated, it was investigated that the contact angle of Si surface was decreased. So, we attempted to investigate the degradation mechanism of the accurate pattern transfer with increasing the count of the de-molding process using scanning electron microscope (SEM), contact angle, and x-ray photoelectron spectroscopy (XPS) analysis of Si mold surface.
Keywords
Degradation characteristic; Nano imprint lithography; ICP; XPS; Contact angle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol., B14, 4129 (1996).
2 D. Y. Khang, H. Kang, T. I. Kim, and H. H. Lee, Nano Lett., 4, 633 (2004).   DOI
3 H. C. Scheer, N. Bogdanski, M. Wissen, T. Konishi, and Y. Hirai, J. Vac. Sci. Technol., B23, 2963 (2005).
4 T. Haatainen, T. Makela, J. Ahopelto, and Y. Kawaguchi, Microelectron. Eng., 86, 2293 (2009).   DOI
5 T. Glinsner, T. Veres, G. Kreindl, E. Roy, K. Morton, T. Wieser, C. Thanner, D. Treiblmayr, R. Miller, and P. Lindner, Microelectron. Eng., 87 1037 (2010).   DOI
6 Y. J. Weng, Y. C. Weng, S. Y. Yang, and J. L. Wong, Polym. Adv. Technol., 19, 1704 (2008).   DOI
7 D. Truffier-Boutry, A. Beaurain, R. Galand, B. Pelissier, J. Boussey, and M. Zelsmann, Microelectron. Eng., 87, 122 (2010).   DOI
8 F. Hamouda, G. Barbillon, S. Held a, G. Agnus, P. Gogol, T. Maroutian, S. Scheuring, and B. Bartenlian, Microelectron. Eng., 86, 583 (2009).   DOI
9 A. Efremov, N. K. Min, J. Jeong, Y. Kim, and K. H. Kwon, Plasma Sources Sci. Technol., 19, 045020 (2010).   DOI
10 D. Y. Chu and J. K. Thomas, Macromolecules, 23, 2217 (1990).   DOI
11 H. H. Park, K. H. Kwon, J. L. Lee, K. S. Suh, O. J. Kwon, K. I. Cho, and S. C. Park, J. Appl. Phys., 76, 4596 (1994).   DOI