• Title/Summary/Keyword: Nano Oxide

Search Result 1,159, Processing Time 0.025 seconds

Growth and analysis of Copper oxide nanowire

  • Park, Yeon-Woong;Seong, Nak-Jin;Jung, Hyun-June;Chanda, Anupama;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.245-245
    • /
    • 2009
  • l-D nanostructured materials have much more attention because of their outstanding properties and wide applicability in device fabrication. Copper oxide(CuO) has been realized as a p-type metal oxide semiconductor with narrow band gap of 1.2 -1.5eV. Copper oxide nanostructures can be synthesized by various growth method such as oxidation reaction, thermal evaporation thermal decomposition, sol-gel. and Mostly CuO nanowire prepared on the Cu substrate such as Copper foil, grid, plate. In this study, CuO NWs were grown by thermal oxidation (at various temperatures in air (1 atm)) of Cu metal deposited on CuO (20nm)/$SiO_2$(250nm)/Si. A 20nm-thick CuO layer was used as an adhesion layer between Cu metal and $SiO_2$

  • PDF

Study on Anodizing at Constant Current for Sealing Treatment of Nano-diamond Powder (나노 다이아몬드 분말 봉공처리 적용을 위한 정전류에서의 알루미늄 양극산화 제조 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.114-118
    • /
    • 2014
  • In this study, an aluminum oxide layer for sealing treatment of nano-diamond powder was synthesized by anodizing under constant current. The produced pore size and oxide thickness were investigated using scanning electron microscopy. The pore size increased as the treatment time increased, current density increased, sulfuric acid concentration decreased, which is different from the results under constant voltage, due to a dissolution of the oxide layers. The oxide layer thickness by the anodizing increased as temperature, time, and current density increased. The results of this study can be applied to optimize the sealing treatment process of nano-diamond particles of 4-10 nm to enhance the resistances of corrosion and wear of the matrix.

Positive Exchange Bias in Thin Film Multilayers Produced with Nano-oxide Layer

  • Jeon, Byeong-Seon;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.304-305
    • /
    • 2013
  • We report a positive exchange bias (HE) in thinmultilayered filmscontaining nano-oxide layer. The positive HE, obtained for our system results from an antiferromagnetic coupling between the ferromagnetic (FM) CoFe and the antiferromagnetic (AFM) CoO layers, which spontaneously form on top of the nano-oxide layer (NOL). The shift in the hysteresis loop along the direction of thecooling field and the change in the sign of exchange bias are evidence of antiferromagnetic interfacial exchange coupling between the CoO and CoFe layers. Our calculation indicates that uncompensated oxygen moments in the NOL results in antiferromagnetic interfacial exchange coupling between the CoO and CoFe layers. One of the interesting features observed with our system is that it displays the positive HE even above the bulk Neel temperature (TN) of CoO. Although the positive HEsystem has a different AFM/FM interfacial spin structure compare to that of the negative HE one, the results of the angular dependence measurements show that the magnetization reversal mechanism can be considered within the framework of the coherent rotation model.

  • PDF

Nonvolatile Memory Characteristics of Double-Stacked Si Nanocluster Floating Gate Transistor

  • Kim, Eun-Kyeom;Kim, Kyong-Min;Son, Dae-Ho;Kim, Jeong-Ho;Lee, Kyung-Su;Won, Sung-Hwan;Sok, Jung-Hyun;Hong, Wan-Shick;Park, Kyoung-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2008
  • We have studied nonvolatile memory properties of MOSFETs with double-stacked Si nanoclusters in the oxide-gate stacks. We formed Si nanoclusters of a uniform size distribution on a 5 nm-thick tunneling oxide layer, followed by a 10 nm-thick intermediate oxide and a second layer of Si nanoclusters by using LPCVD system. We then investigated the memory characteristics of the MOSFET and observed that the charge retention time of a double-stacked Si nanocluster MOSFET was longer than that of a single-layer device. We also found that the double-stacked Si nanocluster MOSFET is suitable for use as a dual-bit memory.

Experimental investigation of self-healing concrete after crack using nano-capsules including polymeric shell and nanoparticles core

  • Taheri, Mojtaba Naseri;Sabet, Seyyed Ali;Kolahchi, Reza
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.337-343
    • /
    • 2020
  • In this paper, we focused on the self-healing concrete using new nano-capsules. Three types of nano-capsules with respect to availability, high strength and temperature tolerance are used; type 1 is URF and polyethylene (PE) as shell and nano titanium oxide (TiO2) as core, type 2 is URF and PE as shell and nano silica oxide (SiO2) as core, type 3 is PE as shell and nano silica oxide (SiO2) as core. The concrete samples mixed by nano-capsules with three percents of 0.5, 1 and 1.5. Based on experimental tests and the compressive strength of samples, the URF-PE-SiO2 is selected for additional tests of compressive strength before and after recovery, ultrasonic test, ion chlorine and water penetration depths. After careful investigation, it is concluded that the optimum value of URF-PE-SiO2 nano-capsules is 0.5% since leads to higher compressive strength, ultrasonic test, ion chlorine and water penetration depths.

Characteristics of Oxide Layers Formed on Al2021 Alloys by Plasma Electrolytic Oxidation in Aluminate Fluorosilicate Electrolyte

  • Wang, Kai;Koo, Bon-Heun;Lee, Chan-Gyu;Kim, Young-Joo;Lee, Sung-Hun;Byon, Eung-Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.308-311
    • /
    • 2008
  • Oxide layers were prepared on Al2021 alloys substrate under a hybrid voltage of AC 200 V (60 Hz) combined with DC 260 V value at room temperature within $5{\sim}60\;min$ by plasma electrolytic oxidation (PEO). An optimized aluminate-fluorosilicate solution was used as the electrolytes. The surface morphology, thickness and composition of layers on Al2021 alloys at different reaction times were studied. The results showed that it is possible to generate oxide layers of good properties on Al2021 alloys in aluminate-fluorosilicate electrolytes. Analysis show that the double-layer structure oxide layers consist of different states such as ${\alpha}-{Al_2}{O_3}$ and ${\gamma}-{Al_2}{O_3}$. For short treatment times, the formation process of oxide layers follows a linear kinetics, while for longer times the formation process slows down and becomes a steady stage. During the PEO processes, the average size of the discharge channels increased gradually as the PEO treatment time increased.

Manufacture of High-Aspect-Ratio Polymer Nano-Hair Arrays by UV Nano Embossing Process (UV 나노 엠보싱 공정을 이용한 고종횡비 고분자 나노 섬모 어레이 제작)

  • Kim Dong-Sung;Lee Hyun-Sup;Lee Jung-Hyun;Lee Kun-Hong;Kwon Tai-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.773-778
    • /
    • 2006
  • High-aspect-ratio nano-hair or nano-pillar arrays have great potential in a variety of applications. In this study, we present a simple and cost-effective replication method of high-aspect-ratio polymer nano-hair arrays. Highly ordered nano-porous AAO (anodic aluminum oxide) template was utilized as a reusable nano-mold insert. The AAO nano-mold insert fabricated by the two-step anodization process in this study had close- packed straight nano-pores, which enabled us to replicate densely arranged nano-hairs. The diameter, depth and pore spacing of the nano-pores in the fabricated AAO nano-mold insert were about 200nm, $1{\mu}m$ and 450nm, respectively. For the replication of polymer nano-hair arrays, a UV nano embossing process was applied as a mass production method. The UV nano embossing machine was developed by our group for the purpose of replicating nano-structures by means of non-transparent nano-mold inserts. Densely arranged high-aspect-ratio nano-hair arrays have been successfully manufactured by means of the UV nano embossing process with the AAO nano-mold insert under the optimum processing condition.

Fabrication of silicon nano-ribbon and nano-FETs by using AFM anodic oxidation

  • Hwang, Min-Yeong;Choe, Chang-Yong;Jeong, Ji-Cheol;An, Jeong-Jun;Gu, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.54-54
    • /
    • 2009
  • AFM anodic oxidation has the capability of patterning complex nano-patterns under relatively high speeds and low voltage. We report the fabrication using a atomic force microscopy (AFM) of silicon nano-ribbon and nano-field effect transistors (FETs). The fabricated nano-patterns have great potential characteristics in various fields due to their interesting electronic, optical and other profiles. The results shows that oxide width and the separation between the oxide patterns can be optimally controlled. The subsequently fabricated silicon nano-ribbon and nano-FET working devices were controled by various tip-sample bias-voltages and scan speed of AFM anodic oxidation. The results may be applied for highly integration circuits and sensitive optical sensor applications.

  • PDF

The study of Synthesis of Dihydropyrimidine for Cardiotropic Drugs Using New Catalysts on the Basis of Nano Cu Oxides (신촉매 나노 구리산화물을 이용한 심혈관 의약품용 Dihydropyrimidine 제조 연구)

  • Uhm Y. R.;Lee M. K.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.441-446
    • /
    • 2005
  • The copper oxide nano powders were synthesized by levitational gas condensation (LGC) method, and were applied to catalyst to fabricate 3,4-dihydropyrimidin-2-(1H)-one. Processes of adsorption of Biginelli reaction reagents on the copper nanooxide surface $Cu_2O{\circ}CuO$ were studied by IR-spectroscopy. It was shown that benzaldehyde coordination, acetoacetic ether on the oxide surface is carried out with participation of carbonyl fragments, urea by N-H bonds which affects positively on the reagents reactivity.