Browse > Article
http://dx.doi.org/10.5695/JKISE.2008.41.6.308

Characteristics of Oxide Layers Formed on Al2021 Alloys by Plasma Electrolytic Oxidation in Aluminate Fluorosilicate Electrolyte  

Wang, Kai (School of Nano & Advanced Materials Engineering, Changwon National University)
Koo, Bon-Heun (School of Nano & Advanced Materials Engineering, Changwon National University)
Lee, Chan-Gyu (School of Nano & Advanced Materials Engineering, Changwon National University)
Kim, Young-Joo (School of Nano & Advanced Materials Engineering, Changwon National University)
Lee, Sung-Hun (Surface Technology Research Center, Korea Institute of Materials Science)
Byon, Eung-Sun (Surface Technology Research Center, Korea Institute of Materials Science)
Publication Information
Journal of the Korean institute of surface engineering / v.41, no.6, 2008 , pp. 308-311 More about this Journal
Abstract
Oxide layers were prepared on Al2021 alloys substrate under a hybrid voltage of AC 200 V (60 Hz) combined with DC 260 V value at room temperature within $5{\sim}60\;min$ by plasma electrolytic oxidation (PEO). An optimized aluminate-fluorosilicate solution was used as the electrolytes. The surface morphology, thickness and composition of layers on Al2021 alloys at different reaction times were studied. The results showed that it is possible to generate oxide layers of good properties on Al2021 alloys in aluminate-fluorosilicate electrolytes. Analysis show that the double-layer structure oxide layers consist of different states such as ${\alpha}-{Al_2}{O_3}$ and ${\gamma}-{Al_2}{O_3}$. For short treatment times, the formation process of oxide layers follows a linear kinetics, while for longer times the formation process slows down and becomes a steady stage. During the PEO processes, the average size of the discharge channels increased gradually as the PEO treatment time increased.
Keywords
Plasma electrolytic oxidation; Al2021 Alloy; Aluminate fluorosilicate electrolyte; Oxide layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Lonyuk, I. Apachitei and J. Duszczyk, Surf. Coat. Tech., 201 (2007) 8688   DOI   ScienceOn
2 Y. K. Wang, H. Y. Zheng, B. S. Li, G. R. Han, L. F. Yuan, Electro. Fin., 22 (2003) 8
3 D. V. Dunford, P. G. Partridge, J. Mater. Sci., 22 (1987) 1790   DOI   ScienceOn
4 W. C. Gu, G. H. Lv, H. Chen, G. L. Chen, W. R. Feng, S. Z. Yang, Mater. Sci. Eng. A, 447 (2007) 158   DOI   ScienceOn
5 G. H. Lv, W. C. Gu, H. Chen, W. R. Feng, M. L. Khosa, L. Li, E. W. Niu, G. L. Zhang, S. Z. Yang, App. Surf. Sci., 253 (2006) 2947   DOI   ScienceOn
6 V. Moutarlier, M. P. Gigandet, J. Pagetti, L. Ricq, Surf. Coat. Tech., 173 (2003) 87   DOI   ScienceOn
7 J. A. Curran, T.W. Clyne, Surf. Coat. Tech., 199 (2005) 168   DOI   ScienceOn
8 A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Leyland, A. Matthews, Surf. Coat. Tech., 182 (2004) 78   DOI   ScienceOn
9 W. Xue, C. Wang, Z. Deng, R. Chen, Y. Lai, T. Zhang, J. Phys.: Condens. Matter., 14 (2002) 10947   DOI   ScienceOn
10 Y. Wang, T. Lei, B. Jiang, L. Guo, Appl. Surf. Sci., 233 (2004) 258   DOI   ScienceOn
11 B. Meyers, S. Lynn, ASM Handbook, Surface Engineering. Vol. 5, ASM International Materials Park, OH, USA, (1994) 925
12 W. Xue, Z. Deng, R. Chen, T. Zhang, Thin Solid Films, 372 (2000) 114   DOI   ScienceOn
13 H. H. Wu, Z. S. Jin, B. Y. Long, F. R. Yu, X. Y. Lu, Chin. Phys. Lett., 20 (2003) 1815   DOI   ScienceOn
14 T. B. Wei, F. Y. Yan, J. Tian, J. Alloys Comp., 389 (2005) 169   DOI   ScienceOn
15 G. Dieter, D. Bacon, Mechanical Metallurgy, McGraw-Hill Book Company, New York, USA (1988) 378