DOI QR코드

DOI QR Code

Characteristics of Oxide Layers Formed on Al2021 Alloys by Plasma Electrolytic Oxidation in Aluminate Fluorosilicate Electrolyte

  • Wang, Kai (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Koo, Bon-Heun (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Lee, Chan-Gyu (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Kim, Young-Joo (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Lee, Sung-Hun (Surface Technology Research Center, Korea Institute of Materials Science) ;
  • Byon, Eung-Sun (Surface Technology Research Center, Korea Institute of Materials Science)
  • Published : 2008.12.31

Abstract

Oxide layers were prepared on Al2021 alloys substrate under a hybrid voltage of AC 200 V (60 Hz) combined with DC 260 V value at room temperature within $5{\sim}60\;min$ by plasma electrolytic oxidation (PEO). An optimized aluminate-fluorosilicate solution was used as the electrolytes. The surface morphology, thickness and composition of layers on Al2021 alloys at different reaction times were studied. The results showed that it is possible to generate oxide layers of good properties on Al2021 alloys in aluminate-fluorosilicate electrolytes. Analysis show that the double-layer structure oxide layers consist of different states such as ${\alpha}-{Al_2}{O_3}$ and ${\gamma}-{Al_2}{O_3}$. For short treatment times, the formation process of oxide layers follows a linear kinetics, while for longer times the formation process slows down and becomes a steady stage. During the PEO processes, the average size of the discharge channels increased gradually as the PEO treatment time increased.

Keywords

References

  1. D. V. Dunford, P. G. Partridge, J. Mater. Sci., 22 (1987) 1790 https://doi.org/10.1007/BF01132408
  2. B. Meyers, S. Lynn, ASM Handbook, Surface Engineering. Vol. 5, ASM International Materials Park, OH, USA, (1994) 925
  3. V. Moutarlier, M. P. Gigandet, J. Pagetti, L. Ricq, Surf. Coat. Tech., 173 (2003) 87 https://doi.org/10.1016/S0257-8972(03)00511-5
  4. A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Leyland, A. Matthews, Surf. Coat. Tech., 182 (2004) 78 https://doi.org/10.1016/S0257-8972(03)00877-6
  5. B. Lonyuk, I. Apachitei and J. Duszczyk, Surf. Coat. Tech., 201 (2007) 8688 https://doi.org/10.1016/j.surfcoat.2006.02.002
  6. G. Dieter, D. Bacon, Mechanical Metallurgy, McGraw-Hill Book Company, New York, USA (1988) 378
  7. W. Xue, C. Wang, Z. Deng, R. Chen, Y. Lai, T. Zhang, J. Phys.: Condens. Matter., 14 (2002) 10947 https://doi.org/10.1088/0953-8984/14/37/201
  8. J. A. Curran, T.W. Clyne, Surf. Coat. Tech., 199 (2005) 168 https://doi.org/10.1016/j.surfcoat.2004.09.037
  9. Y. Wang, T. Lei, B. Jiang, L. Guo, Appl. Surf. Sci., 233 (2004) 258 https://doi.org/10.1016/j.apsusc.2004.03.231
  10. Y. K. Wang, H. Y. Zheng, B. S. Li, G. R. Han, L. F. Yuan, Electro. Fin., 22 (2003) 8
  11. T. B. Wei, F. Y. Yan, J. Tian, J. Alloys Comp., 389 (2005) 169 https://doi.org/10.1016/j.jallcom.2004.05.084
  12. H. H. Wu, Z. S. Jin, B. Y. Long, F. R. Yu, X. Y. Lu, Chin. Phys. Lett., 20 (2003) 1815 https://doi.org/10.1088/0256-307X/20/10/345
  13. G. H. Lv, W. C. Gu, H. Chen, W. R. Feng, M. L. Khosa, L. Li, E. W. Niu, G. L. Zhang, S. Z. Yang, App. Surf. Sci., 253 (2006) 2947 https://doi.org/10.1016/j.apsusc.2006.06.036
  14. W. Xue, Z. Deng, R. Chen, T. Zhang, Thin Solid Films, 372 (2000) 114 https://doi.org/10.1016/S0040-6090(00)01026-9
  15. W. C. Gu, G. H. Lv, H. Chen, G. L. Chen, W. R. Feng, S. Z. Yang, Mater. Sci. Eng. A, 447 (2007) 158 https://doi.org/10.1016/j.msea.2006.09.004

Cited by

  1. Influences of Potassium Fluoride (KF) Addition on the Surface Characteristics in Plasma Electrolytic Oxidation of Marine Grade Al Alloy vol.49, pp.3, 2016, https://doi.org/10.5695/JKISE.2016.49.3.280