• Title/Summary/Keyword: Nano 입자

Search Result 1,078, Processing Time 0.028 seconds

Waterborne Core-shell Pressure Sensitive Adhesive (PSA) Based on Polymeric Nano-dispersant (고분자 분산제를 이용한 Core-shell 수성 감압점착제)

  • Lee, Jin-Kyoung;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • An environmentally friendly water-based pressure sensitive adhesive (PSA) was designed in an attempt to replace the solvent-based adhesive for dry lamination used in flexible food packaging films. Instead of using a low molecular weight surfactant, which may have variable material properties, a high molecular weight dispersant was used for emulsification. A polymeric nano-dispersant (PND) was synthesized using solution polymerization, and it was used as a micelle seed in the surfactant, resulting in the synthesis of a core/shell grafted acrylic adhesive. The shell and core exhibited different $T_g$ values, so that the initial adhesion strength and holding power were complemented by the film's flexibility, which is required to provide good adhesion of thin films. Results showed that the PSA designed in this study using the PND instead of traditional low molecular weight surfactant had adhesive properties applicable to the flexible packaging with appropriate tack.

The effect of H2O, NH3 and applied voltage to the particle conversion in the desulfurization system using a nano-pulse plasma (나노펄스 플라즈마를 이용한 탈황 시스템의 H2O 및 NH3, 펄스 인가전압에 따른 입자변환 분석)

  • Kim, Younghun;Shin, Dongho;Lee, Gunhee;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Nano-pulse plasma technology has great potential as the process simplicity, high efficiency and low energy consumption for SO2 removal. The research on the gas-to-particle conversion is required to achieve higher efficiency of SO2 gas removal. Thus, we studied the effect of the relative humidity, NH3 concentration and applied voltage of the nano-pulse plasma system in the gas to particle conversion of SO2. The particles from the conversions were increased from 10 to 100 nm in diameter as relative humidity, NH3 concentration, applied voltage increases. With these results, nano-pulse plasma system can be used to more efficient removal of SO2 gas by controlling above parameters.

Preparation of Nano Size Cerium Oxide from Cerium Carbonate (탄산(炭酸)세륨으로부터 나노크기 산화(酸化)세륨 제조연구(製造硏究))

  • Kim, Sung-Don;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.24-29
    • /
    • 2009
  • Since cerium carbonate becomes porous cerium oxide by releasing carbon dioxide and vapour steam during calcination of cerium carbonate, nano size cerium oxide can be obtained by milling calcined cerium carbonate. Therefore cerium carbonate [$Ce_2(CO_3)3{\cdot}XH_2O$] is used generally for the preparation of nano size cerium oxide. In order to obtain nano size cerium oxide from cerium carbonate prepared by reactive crystallization of cerium chloride solution and ammonium bicarnonate solution, the effects of experimental variables in the milling and calcination of cerium carbonate, such as calcination temperature, milling time, rpm of planetary mill, amount of dispersant and ball size for milling on the size of cerium oxide was investigated in this study. Cerium oxide prepared with the conditions of calcination temperature of $700^{\circ}C$, milling time of 5 hour was 160nm mean particle size.

Preparation of Ag Nano-Powder from Aqueous Silver Nitrate Solution through Reduction with Hydrazine Hydrate (Hydrazine Hydrate 환원(還元)에 의한 질산은(窒酸銀) 수용액(水溶液)으로부터 은(銀) 나노분말(粉末)의 제조(製造) 연구(硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.19-26
    • /
    • 2006
  • The preparation of Ag nano-powder from aqueous silver nitrate solution, which would be available for the recycling of silver bearing wastes, was investigated by a reductive precipitation reaction using hydrazine hydrate as a reducing agent. Silver solution was prepared by dissolving silver nitrate with distilled water, and then the dispersant, Tamol NN8906 or Tween 20, was also mixed to avoid the agglomeration of particles during the reductive reaction followed by the addition of hydrazine hydrate to prepare Ag nano-particles. Ag particles obtained from the reduction reaction from silver solution were characterized using the particle size analyzer and TEM to determine the particle size distribution and morphology. It was found that about 100% excess of hydrazine hydrate was required to reduce completely silver ions in the solution. Ag powders with very narrow distribution could be obtained when Tamol NN8906 was used as the dispersant. In case of Tween 20, the particle size distribution showed typically the bimodal or multimodal distribution and the morphology of Ag particles was found to be irregular shape in both cases.

Preparation of Nano Flexible Vesicles Encapsulating Adenosine and Composition Optimization by Taguchi Method (아데노신을 포집한 나노 플렉시블 베시클 제조 및 다구찌 방법에 의한 조성의 최적화)

  • Lee, Seo Young;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.487-492
    • /
    • 2019
  • Nano flexible vesicles encapsulating an adenosine, an active ingredient for anti-wrinkle, were prepared for the transdermal delivery. The nano flexible vesicle is usually composed of phospholipid, ethanol, and lysolecithin, which is a type of liquid crystalline one made by dispersing the liquid crystalline phase formed through a hydration process into a water phase. In this study, the Taguchi method, one of the experimental design methods, was applied to investigate the factors affecting the vesicle droplet size. Signal to noise (S/N) ratios for the smaller the better characteristics of vesicle droplet size were calculated using the Taguchi orthogonal array. The composition of ethanol and lysolecithin in the vesicle constituents and the amount of aqueous solution added in the hydration process were main factors that had a great effect on the vesicle droplet size and ANOVA test showed that these factors were significant at 95% confidence level.

Synthesis Strategy for Electrodes and Metal-Organic Frameworks based on Metal Nanoparticle using Flashlight (플래시라이트를 이용한 금속나노입자 기반 전극 및 금속유기골격체 합성 전략)

  • Yim, Changyong;Baek, Saeyeon;Park, Soyeon;Kim, Hamin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.591-595
    • /
    • 2020
  • Intensive pulsed light (IPL) technique enables energy to be transferred to a target substance in a short time per millisecond at room temperature under an ambient atmosphere. Due to the growing interest in flashlights with excellent functionality among various technologies, light-sintering research on metal particles using IPL has been carried out representatively. Recently, examples of the application of IPL to various material synthesis have been reported. In the present article, various strategies using IPL including the manufacture of flexible electrodes and the synthesis of metal-organic frameworks were discussed. In particular, the process of improving oxidation resistance and electrical conductivity of electrodes, and also the metal-organic framework synthesis from metal surface were explained in detail. We envision that the review article can be of great help to researchers who investigate electrode manufacturing and material synthesis using IPL.

Preparation of Valuable Compounds Encapsulated Polymer Nanoparticles with High Payload Using Core-crosslinked Amphiphilic Polymer Nanoparticles (코아 가교 양친성 고분자 나노입자를 이용한 고함량 유용 약물 담지 고분자 나노입자 제조)

  • Kim, Nahae;Kim, Juyoung
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.26-34
    • /
    • 2016
  • In this study, core-crosslinked amphiphilic polymer (CCAP) nanoparticles prepared using a reactive amphiphilic polymer precursor (RARP) were used for preparing some valuable compounds encapsulated polymer nanoparticles with high payload through nanoprecipitation process. Various solvents (acetone, ethanol, and THF) having different polarity and CCAP nanoparticles prepared using different amphiphilicity were used for the preparation of ${\alpha}$-tocopherol encapsulated polymer nanoparticles to investigate their effects on the encapsulation efficiency, payload, nanoparticle size, and stability. CCAP dissolved in hydrophobic solvent, THF, could form ${\alpha}$-tocopherol encapsulated polymer nanoparticles dispersed in water with the high payload of ${\alpha}$-tocopherol and encapsulation efficiency. Because of their physically and chemically robust nano-structure originated from crosslinking of the hydrophobic core, CCAP nanoparticles could encapsulate ${\alpha}$-tocopherol with the high payload (33 wt%) and encapsulation efficiency (97%), and form 70 nm-sized stable nanoparticles in water.

Experimental Investigation of Nano-sized Particulate Matter Emission Characteristics under Engine Operating Conditions from Common Rail Diesel Engine (커먼레일 디젤엔진의 운전조건이 나노크기 입자상 물질 배출특성에 미치는 영향에 관한 실험적 연구)

  • Lee, Hyung-Min;Myung, Cha-Lee;Park, Sim-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • The objective of this work presented here was experimental study of steadystate and cold start exhaust nano-sized particle characteristics from common rail diesel engine. The effect of the diesel oxidation catalyst (DOC) on the particle number reduction was insignificant, however, particle number concentration levels were reduced by 3 orders of magnitude into the downstream of diesel particulate filter (DPF). In high speed and load conditions, natural regeneration of trapped particle occurred inside DPF and it was referable to increase particle number concentration. As fuel injection timing was shifted BTDC $6^{\circ}CA$ to ATDC $4^{\circ}CA$, particle number concentration level was slightly reduced, however particle number and size was increased at ATDC $9^{\circ}CA$. Nucleation type particle reduced and accumulation type particle was increased on EGR condition.

Measurement of Fluorescence Correlation Function by Using Size and Concentration of Fluorescence Particles (형광입자들의 크기와 농도에 따른 형광 상관 분광함수 측정)

  • Han, Yesul;Lee, Jaeran;Kim, Sok Won
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.3
    • /
    • pp.113-118
    • /
    • 2012
  • The concentration and hydrodynamic radius of nano-sized fluorescence particles diffusing in solution were compared by using fluorescence correlation spectroscopy (FCS), which can measure the variation of the correlation function of a fluorescence signal by size and number of particles. The used nano-sized fluorescence particles are Alex Fluor 647, quantum dots, and fluorescence beads, and three kinds of sample solutions with different concentrations were prepared by dilution to 1/10 and 1/100 with distilled water for each kind of particles. The effective focal volumes were calculated by using the known diffusion coefficient of Alexa Fluor 647 particles, and the diffusion time, number of particles in focal volume, and variation of concentration according to the dilution could be measured by the FCS system. Through this study, we determined that the concentrations of arbitrarily diluted sample solutions can be measured by a home-built FCS setup in the range of 0.1 nM ~ 10 nM and that the diffusion coefficient of the quantum dot was $27{\pm}1{\mu}m^2/s$.

Recycling of Carbon Particle from Phenol Resin Waste using Supercritical Fluid (초임계 유체를 이용한 폐페놀수지로부터 카본입자 재활용 연구)

  • Cho, Hang-Kyu;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.220-224
    • /
    • 2017
  • In this study, we investigated a new recycling method of phenol resin, which is widely used to make electric insulation boards and adhesives, into carbon particles by using supercritical fluids. Because phenol resin is insoluble and infusible, most of the phenol resin wastes are buried in the ground or incinerated, which leads to environmental pollution. Therefore, development of a new method to recycle phenol resin waste is an urgent issue. In this study, phenol resin waste was treated with four sub/supercritical solvents: ethanol, acetone, water, and methanol. For all the sub/supercritical solvents, the phenol resin wastes were broken down into carbon nano particles at much lower temperatures than that required in the existing carbon particle manufacturing processes. We investigated the difference of morphologies and physical properties of recycled carbon particles according to the use of various solvents. As a result, carbon nano particles with the same amorphous structure were obtained from phenol resin waste with the usage of various sub/supercritical solvents at much lower temperature.