• Title/Summary/Keyword: NURBS basis functions

Search Result 24, Processing Time 0.02 seconds

A New Method of the Global Interpolation in NURBS Surface (NURBS Surface Global Interpolation에 대한 한 방법)

  • 정형배;나승수;박종환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.237-243
    • /
    • 1997
  • A new method is introduced for the interpolation in NURBS Surface. This method uses the basis functions to assign the parameter values to the arbitrary set of geometric data and uses the iteration method to compute the control net. The advantages of this method are the feasible transformation of the data set to the matrix form and the effective surface generation as a result, especially to the design engineer.

  • PDF

Combination of isogeometric analysis and extended finite element in linear crack analysis

  • Shojaee, S.;Ghelichi, M.;Izadpanah, E.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.125-150
    • /
    • 2013
  • This paper intends to present an application of isogeometric analysis in crack problems. An isogeometric formula is developed based on NURBS basis functions - enriched and adopted via X-FEM enrichment functions. The proposed method which is represented by the combination of the two above-mentioned methods, first by using NURBS functions models the geometry exactly and then by defining level set function on domain, identifies available discontinuity in elements. Additional DOFs are allocated to elements containing the crack and X-FEM enrichment functions enrich approximate solution. Moreover, a subelement refinement technique is used to improve the accuracy of integration by the Gauss quadrature rule. Finally, several numerical examples are illustrated to demonstrate the effectiveness, robustness and accuracy of the proposed method during calculation of crack parameters.

Automatic NURBS Surface Generation from Unorganized Point Cloud Data (임의의 점 군 데이터로부터 NURBS 곡면의 자동생성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.200-207
    • /
    • 2006
  • In this paper a new approach which combines implicit surface scheme and NURBS surface interpolation method is proposed in order to generate a complete surface model from unorganized point cloud data. In the method a base surface was generated by creating smooth implicit surface from the input point cloud data through which the actual surface would pass. The implicit surface was defined by a combination of shape functions including quadratic polynomial function, cubic polynomial functions and radial basis function using adaptive domain decomposition method. In this paper voxel data which can be extracted easily from the base implicit surface were used in order to generate rectangular net with good quality using the normal projection and smoothing scheme. After generating the interior points and tangential vectors in each rectangular region considering the required accuracy, the NURBS surface were constructed by interpolating the rectangular array of points using boundary tangential vectors which assure C$^1$ continuity between rectangular patches. The validity and effectiveness of this new approach was demonstrated by performing numerical experiments for the various types of point cloud data.

On the Structural Analysis Using the Isogeometry Analysis Approach (등기하 해석법을 이용한 구조해석)

  • Lee, Joo-Sung;Chang, Kyoung-Sik;Roh, Myoung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • In the present work, isogeometric analysis in linear elasticity problem is conducted using the basis functions from NURBS. The objectives of isogeometric analysis introduced is to integrate both geometric modeling(CAD) and computational analysis(CAE), and this can be accomplished from direct usage of geometric modeling by NURBS as the computational mesh. The merit of the isogeometry analysis is that NURBS surface are able to represent exact geometry from the control points and knot vectors, and also subsequent refinement is relatively simple relatively. In order to verify the computer codes developed in this study, it has been applied to two structural models of which geometry are simple ; 1) circular cylinder subjected to the constant internal pressure loading, 2) square plate with circular hole at center subjected to uniform tension. The exact solutions of these two models are available. Convergence of the approximate solutions by the present code for the isogeometry analysis are investigated by mesh refinement with inserting knots (h-refinement) and by mesh refinement with order elevation of the basis functions (p-refinement).

Isogeometric Analysis of Mindlin Plate Structures Using Commercial CAD Codes (상용 CAD와 연계한 후판 구조의 아이소-지오메트릭 해석)

  • Lee, Seung-Wook;Koo, Bon-Yong;Yoon, Min-Ho;Lee, Jae-Ok;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.329-335
    • /
    • 2011
  • The finite element method (FEM) has been used for various fields like mathematics and engineering. However, the FEM has a difficulty in describing the geometric shape exactly due to its property of piecewise linear discretization. Recently, however, a so-called isogeometric analysis method that uses the non-uniform rational B-spline(NURBS) basis function has been developed. The NURBS can be used to describe the geometry exactly and play a role of basis functions for the response analysis. Nevertheless, constructing the NURBS basis functions in analysis is as costly as a meshing process in the FEM. Since the isogeometric method shares geometric data with CAD, it is possible to intactly import the model data from commercial CAD tools. In this paper, we use the Rhinoceros 3D software to create CAD models and export in the form of STEP file. The information of knot vectors and control points in the NURBS is utilized in the isogeometric analysis. Through some numerical examples, the accuracy of isogeometric method is compared with that of FEM. Also, the efficiency of the isogeometric method that includes the CAD and CAE in a unified framework is verified.

Shape Design Sensitivity Analysis Using Isogeometric Approach (등기하 해석법을 이용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.339-345
    • /
    • 2007
  • In this paper, a variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions for response analysis are generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Furthermore, the solution space for the response analysis can be represented in terms of the same functions to represent the geometry, which enables to provide a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling and analyze arbitrarily shaped structures without re-meshing. In this paper, a continuum-based adjoint sensitivity analysis method using the isogeometric approach is extensively derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of geometry In the isogeometric analysis, however, the geometric properties are already embedded in the B-spline basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. Through some numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

Isogeometric Shape Design Sensitivity Analysis of Mindlin Plates (민들린 평판의 아이소-지오메트릭 형상 설계민감도 해석)

  • Lee, Seung-Wook;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • In this paper, a shape design sensitivity analysis(DSA) method is presented for Mindlin plates using an isogeometric approach. The isogeometric method possesses desirable advantages; the representation of exact geometry and the higher order inter-element continuity, which lead to the fast convergence of solution as well as accurate sensitivity results. Unlike the finite element methods using linear shape functions, the isogeometric method considers the exact normal vector and curvature of the CAD geometry, taking advantages of higher order NURBS basis functions. A selective reduced integration(SRI) technique is incorporated to overcome the difficulty of 'shear locking' phenomenon. This simple technique is surprisingly helpful for the accuracy of the isogeometric shape sensitivity without complicated formulation. Through the numerical examples of plate bending problems, the accuracy of the proposed isogeometric analysis method is compared with that of finite element one. Also, the isogeometric shape sensitivity turns out to be very accurate when compared with finite difference sensitivity.

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

Isogeometric Analysis of Electrostatic Adhesive Forces in Two-Dimensional Curved Electrodes (2차원 곡면형 전극에서 정전기 흡착력의 아이소-지오메트릭 해석)

  • Oh, Myung-Hoon;Kim, Jae-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.199-204
    • /
    • 2021
  • In this study, an isogoemetric analysis (IGA) method that uses NURBS (Non-Uniform Rational B-Spline) basis functions in computer-aided design (CAD) systems is employed to account for the geometric exactness of curved electrodes constituting an electro-adhesive pad in electrostatic problems. The IGA is advantageous for obtaining precise normal vectors when computing the electro-adhesive forces on curved surfaces. By performing parametric studies using numerical examples, we demonstrate the superior performance of the curved electrodes, which is attributed to the increase in the normal component of the electro-adhesive forces. In addition, concave curved electrodes exhibit better performance than their convex counterparts.

The forecast of curve shape reforming by variation of B-spline knot vector values (B-스플라인 노트백터 값 변화에 의한 곡선 형상 변화 예측)

  • 김희중;정재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.866-871
    • /
    • 1994
  • B-spline curves and surfaces are effective solutions for design and modelling of the freeform models. The control methods of these are using with control points, knot vectors and weight of NURBS. Using control point is easy and resonable for representation of general models. But the movement of control points bring out the reformation of original convex hull. The B-splines with nonuniform knot vector provide good result of the shape modification without convex hull reforming. B-splines are constructed with control points and basis functions. Nonuniform knot vectors effect on the basis functions. And the blending curves describe the prorities of knot vectors. Applying of these, users will forecast of the reformed curves after modifying controllabler primitives.

  • PDF