• 제목/요약/키워드: NOx Emissions

검색결과 731건 처리시간 0.029초

하이브리드/이중 선회제트 연소기에서 공기 예열온도에 의한 배출 특성 연구 (A study of Overall Combustion Characteristics according to the Air Preheated Temperature in a Hybrid/Dual Swirl Jet Combustor)

  • 최인찬;조준익;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.149-152
    • /
    • 2012
  • The laboratory experiments have been conducted to investigate the effects of air preheated temperature on the emission characteristics by a model gas turbine burner with a hybrid/dual swirl jet flames configuration. The concentration of NOx and CO emissions, and flue gas temperature at combustor exit were measured with varying the equivalence ratio for different air preheated temperatures of 300, 400, 500K at atmospheric pressure. It was overall shown that the NOx and CO emissions, and flue gas temperature were decreased according to the decreasing of equivalence ratio due to the effects of lean premixed combustion regardless of the air preheated temperature. Experimental results of a lean premixed flames configuration indicated that the NOx emission was increased with higher inlet air temperature and air flow rate, which is attributed to the increasing of flue gas temperature and heat release related to the thermal NOx mechanism. But the CO emission was shown the opposite tendency, that is, the CO emission was decreased with increasing of inlet air temperature and flow rate.

  • PDF

층류 예혼합 화염의 예열공기 연소특성 (Characteristics of Preheated Air Combustion in a Laminar Premixed Flame)

  • 이종호;이승영;한재원;장영준;전충환
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.1039-1046
    • /
    • 2002
  • Co-flow axisymmetric laminar premixed flame of methane was used to study the influence of air temperature and $N_2$ addition on the flame structure, temperature field and emission characteristics. OH 2-D images and temperatures along the centerline were measured experimentally by PLIF and CARS techniques respectively to observe the influences of dilution and thermal effects of $N_2$ in the gas mixture. Also, the concentration of NOx was measured at each condition by gas analyser to see the suppression effect of N2 addition on NOx emissions. It was found that OH concentrations distribute widely as air temperature goes higher, while the effect of $N_2$ addition is not significant. But $N_2$ addition highly contributes to the flame front and NOx emissions which was argued to be due to the reduction of flame temperature. In accordance with experimental study, numerical simulation using CHEMKlN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results.

동축 수소 확산화염에서의 NOx 생성 분석 (Analysis of NOx Emissions in Thrbulent Nonpremixed Hydrogen-Air Jet Flames with Coaxial Air)

  • 박양호;김성룡;문희장;윤영빈;정인석
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.19-30
    • /
    • 2000
  • The characteristics of NOx emissions in pure hydrogen nonpremixed flames with coaxial air are analyzed numerically for the three model cases of coaxial air flames classified by varying coaxial air velocity and/or fuel velocity. In coaxial air flames, the flame length is reduced by coaxial air and can be represented as a function of the ratio of coaxial air to fuel velocity. Coaxial air decreases flame reaction zone, resulting in reducing flame residence time significantly. Finally, the large reduction of EINOx is achieved by the decrease of the flame residence time. It is found that because coaxial air can break down the flame self-similarity law, appropriate scaling parameters, which are different from those in the simple jet flames, are recommended. In coaxial air flames, the flame residence time based on the flame volume produces better results than that based on a cube of the flame length. And some portion of deviations from the 1/2 scaling law by coaxial air may be due to the violation of the linear relationship between the flame volume and the flame reaction zone.

  • PDF

CR-DPF와 Cooled-EGR 적용한 대형디젤기관 성능에 관한 연구 (A Study on Heavy-Duty Diesel Engine Performance with a CR-DPF and Cooled-EGR)

  • 문병철;오용석;오상기;강금원;안균재
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.75-80
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. Particularly in diesel vehicles, NOx and particulate matters exhaust in significant amounts even though diesel vehicles provide merits in aspects of higher thermal efficiency and lower $CO_2$. To reduce Particulate matters and NOx, after-treatment technology such as filter trap, oxidation catalysts and EGR has been applied. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13 and D-3 modes.

Urea-SCR 시스템의 DeNOx 특성에 관한 실험적 연구 (Experimental Study on DeNOx Characteristics of Urea-SCR System)

  • 함윤영;이성호;정홍석;신동현
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.180-186
    • /
    • 2009
  • To meet the NOx limit without a penalty of fuel consumption, urea SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, as a basic research to develop an algorithm for urea injection control, the characteristics of engine out NOx emission and behavior of NOx reduction during steady-state and transient conditions were investigated using 2L DI diesel engine. Test results show that on increasing the catalyst temperature the variations in the outlet NOx concentration are faster and maximal allowable $NH_3$ storage exponentially decreases. For change from a low to high engine load, it can be seen that a few seconds after load-step is required to reach full NOx conversion and the adsorbed amount of $NH_3$ at lower temperature desorb during the next temperature increase, causing $NH_3$ slip. Engine out NOx emission needs to be corrected because NOx emissions just after step load is lower than that of steay state condition.

부산 북항에서의 선박 배출물질 현황과 선속제한에 의한 배출량 감소 연구 (Current Status of Ship Emissions and Reduction of Emissions According to RSZ in the Busan North Port)

  • 이보경;이상민
    • 해양환경안전학회지
    • /
    • 제25권5호
    • /
    • pp.572-580
    • /
    • 2019
  • 최근 지구 환경문제에 대한 논의가 활발해지면서 국제 운송의 큰 부분을 차지하고 있는 해상운송에서도 배출물질 규제를 위한 정책이 시행되고 있다. 이 연구에서는 선속 제한에 의한 배출량의 감축 효과를 검토하기 위하여 기관 부하율을 적용하여 선박의 배출물질을 수치계산하였다. 2017년 1월 1일부터 12월 31일까지 부산 북항의 입출항 선박을 대상으로 선속제한구역 20마일권역을 설정하고 해당 구간에서의 선종별, 선속별로 배출량을 계산하고 분석하였다. 항행, 접 이안, 정박 중일 때를 모두 포함하여 가장 많은 배출물질을 발생시키는 선박은 컨테이너선 76.1 %, 일반화물선 7.2 %, 여객선 6.8 %의 순으로 계산되었다. 항행 및 접 이안 모드일 때는 일반화물선이 여객선보다 배출물질이 적었지만 정박 모드일 때는 여객선보다 많았다. 총 배출물질은 질소산화물, 황산화물, 입자상물질, 휘발성유기화합물의 순으로 각각 49.4 %, 45 %, 4 % 1.6 %로 구성되었다. 선속 제한이 없는 경우와 선박 속도를 12노트, 10노트, 8노트로 제한시킬 때 배출물질을 비교하면 속도 12노트 제한의 경우 질소산화물 39 %, 휘발성유기화합물 40 %, 입자상물질 42 %, 황산화물 38 %의 감소효과가 있고, 10노트 제한일 때 질소산화물 52 %, 휘발성유기화합물 54 %, 황산화물 56 %, SOx 50 %의 감소효과가 있으며, 8노트 제한일 때 질소산화물 62 %, 휘발성유기화합물 64 %, 입자상물질 67%, 황산화물 59 %의 감소효과가 있었다. 이처럼 선박의 속도 감소에 따라 배출물질 역시 크게 감소되는 연구결과를 확인할 수 있었으며, 향후 항만 배출물질 감소를 위해 선박의 속도를 제한하는 방안을 적극적으로 고려할 필요가 있다.

인천항의 대기오염물질 배출량 산정 연구 (A Study on Estimating Air Pullution in the Port of Incheon)

  • 이정욱;이향숙
    • 한국항만경제학회지
    • /
    • 제37권1호
    • /
    • pp.143-157
    • /
    • 2021
  • 세계보건기구(World Health Organization, WHO), 경제개발협력기구(Organization for Economic Cooperation and Development, OECD)등 국제기구 및 주요 선진국에서는 대기오염의 심각성을 인지하고 있다. 또한 국제해사기구(International Maritime Organization, IMO) 등의 국제기구에서도 선박에서 발생하는 대기오염을 감소시키 위해 다양한 규제를 시행하고 있다. 이러한 국제적인 흐름에 따라 국내에서도 「항만지역등 대기질 개선에 관한 특별법」(이하 특별법)을 제정하며, 항만에서 기인하는 대기오염을 감소시키려는 노력을 보이고 있다. 특별법의 목적은 항만지역 등의 대기질을 개선하기 위하여 종합적인 시책을 추진하는 것이다. 본 연구는 이러한 정책적 움직임에 맞추어 항만에서 기인하는 대기오염물질 배출원별 배출량을 파악하여 정책의 우선순위 설정에 기초자료를 마련하고자 하였다. 이를 위해 선박, 차량, 하역장비, 하역/야적재비산먼지, 도로재비산먼지, 철도 6개 부문으로 분류하여 분석을 시행하였으며, 유럽환경청(European Environment Agency, EEA)과 미국환경보호국(United States Environmental Protection Agency, EPA)에서 제시하는 방법론을 이용하였다. 분석대상 오염물질은 일산화탄소(CO), 질소산화물(NOX), 황산화물(SOX), 총부유물질(TSP), 미세먼지 및 초미세먼지(PM10, PM2.5), 암모니아(NH3)를 대상으로 분석하였다. 분석결과 총 7,122톤의 배출량이 발생한 것으로 나타났다. 물질별로는 NOX가 5,084톤으로 가장많은 비중을 차지하는 것으로 나타났으며, 다음으로 CO(984톤), SOx(530톤), TSP(335톤)의 순으로 나타났다. 배출원 별로는 선박이 4,107톤으로써 가장 많은 비중을 차지하며 다음으로 차량이 2,622톤으로써 높은 배출량을 보였다. 이는 각각 전체 배출량의 57.6%와 36.8%로써 항만 대기오염을 유발하는 주요원인으로 판명되어 이들 배출원에 대한 대책이 필요함을 시사하였다.

제철제강시설의 대기오염물질 배출특성 및 배출계수 산정 (Emission Characteristics and Coefficients of Air Pollutants in Iron and Steel Manufacturing Facilities)

  • 김병욱;홍영균;이영섭;양승표;현근우;이건호
    • 한국환경보건학회지
    • /
    • 제47권3호
    • /
    • pp.259-266
    • /
    • 2021
  • Objectives: This study was conducted to identify the emissions characteristics of total particulate matter (TPM), fine dust (PM10, PM2.5), and gaseous pollutants (SOx, NOx) in iron and steel manufacturing facilities in order to investigate emissions factors suitable for domestic conditions. Methods: Total particulate matter (TPM), fine dust (PM10, PM2.5), and gas phase materials were investigated at the outlet of electric arc furnace facilities using a cyclone sampling machine and a gas analyzer. Results: The concentrations of TPM ranged from 1.64 to 3.14 mg/Sm3 and the average was 2.47 mg/Sm3. Particulate matter 10 (PM10) averaged 1.49 mg/Sm3 with a range of 0.92 to 1.99 mg/Sm3, and the resulting ratio of PM10 to TPM was around 60 percent. PM2.5/PM10 ranged from 33.7 to 47.9% and averaged 41.6%. Sulfur oxides (SOx) were not detected, and nitrogen oxides (NOx) averaged 6.8 ppm in the range of 5.50 to 8.67 ppm. TPM emission coefficients per product output were in the range of 0.60 to 1.26 g/kg, 0.13 to 0.79 g/kg for PM10 and 0.12 to 0.36 g/kg for PM2.5, and showed many differences from the emissions coefficients previously announced. An emissions coefficient for NOx is not currently included in the domestic notices, but the results were calculated to be 0.42 g/kg per product output. Conclusions: Investigation and research on emissions coefficients that can reflect the characteristics of various facilities in Korea should be conducted continuously, and the determination and application of unique emissions coefficients that are more suitable for domestic conditions are needed.

배출가스 저감장치에 따른 Euro 5 경유 대형버스의 유해대기오염물질 배출특성 (Emission Characteristics of Hazardous Air Pollutants from Diesel Heavy Duty Buses for Euro 5 according to After-treatment Systems)

  • 홍희경;문선희;정택호;김선문;서석준;김정화;정성운;홍유덕
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.175-184
    • /
    • 2018
  • Emission characteristics of regulated (NOx, PM, CO, NMHC) and unregulated (VOCs, aldehydes, PAHs) air pollutants were investigated for diesel heavy duty buses equipped with different after-treatment systems (DPF+EGR and SCR) under urban driving cycle. The combustion temperature and the working temperature of SCR catalysts were important to make impact on NOx emissions, whereas PM emissions were low. The alkane groups dominated NMVOCs emissions, making 42.6~59.4% of sum of the NMVOCs emissions. Especially, alkane emissions of DPF+EGR-equipped vehicle included DOC had 14.9~15.5% higher than those of SCR-equipped vehicle due to low efficiency of oxidation catalyst. In the case of individual NMVOCs, n-nonane and propylene emissions highly occupied for DPF+EGR and SCR, respectively. Formaldehyde emissions among aldehydes were the highest and PAHs emissions were hardly detected except naphthalene and phenanthrene. The NMHC speciation has been shown to be the highest of the formaldehyde ranged 20.8~21.5%. The results of this study will be contributed to establish Korean HAPs emission inventory for automobile source.

수소 난류확산화염에서 NOx 생성특성에 대한 복사분율의 영향 (The Effect of Flame Radiation on NOx Emission Characteristic in Hydrogen Turbulent Diffusion Flames)

  • 김승한;김문기;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.47-58
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the l/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF