• Title/Summary/Keyword: NIR (near-infrared)

Search Result 615, Processing Time 0.03 seconds

Prediction of moisture contents in green peppers using hyperspectral imaging based on a polarized lighting system

  • Faqeerzada, Mohammad Akbar;Rahman, Anisur;Kim, Geonwoo;Park, Eunsoo;Joshi, Rahul;Lohumi, Santosh;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.995-1010
    • /
    • 2020
  • In this study, a multivariate analysis model of partial least square regression (PLSR) was developed to predict the moisture content of green peppers using hyperspectral imaging (HSI). In HSI, illumination is essential for high-quality image acquisition and directly affects the analytical performance of the visible near-infrared hyperspectral imaging (VIS/NIR-HSI) system. When green pepper images were acquired using a direct lighting system, the specular reflection from the surface of the objects and their intensities fluctuated with time. The images include artifacts on the surface of the materials, thereby increasing the variability of data and affecting the obtained accuracy by generating false-positive results. Therefore, images without glare on the surface of the green peppers were created using a polarization filter at the front of the camera lens and by exposing the polarizer sheet at the front of the lighting systems simultaneously. The results obtained from the PLSR analysis yielded a high determination coefficient of 0.89 value. The regression coefficients yielded by the best PLSR model were further developed for moisture content mapping in green peppers based on the selected wavelengths. Accordingly, the polarization filter helped achieve an uniform illumination and the removal of gloss and artifact glare from the green pepper images. These results demonstrate that the HSI technique with a polarized lighting system combined with chemometrics can be effectively used for high-throughput prediction of moisture content and image-based visualization.

Kinematic Distances of the Galactic Supernova Remnants in the First Quadrant

  • Lee, Yong-Hyun;Koo, Bon-Chul;Lee, Jae-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.43.2-44
    • /
    • 2020
  • We have carried out high-resolution near-infrared (NIR) spectroscopic observations toward 16 Galactic supernova remnants (SNRs) showing strong H2 emission features. A dozen bright H2 emission lines are clearly detected for individual SNRs, and we have measured their central velocities, line widths, and fluxes. For all SNRs except one (G9.9-0.8), the H2 line ratios are well consistent with that of thermal excitation at T~2000 K and their line widths are broader than ~10 km s-1, indicating that the H2 emission lines are most likely from shock-excited gas and therefore that they are physically associated with the remnants. The kinematic distances to the 15 SNRs are derived from the central velocities of the H2 lines using a Galactic rotation model. We derive for the first time the kinematic distances to four SNRs: G13.5-0.2, G16.0-0.5, G32.1-0.9, G33.2-0.6. Among the rest 11 SNRs, the central velocities of the H2 emission lines for six SNRs are well consistent (±5 km s-1) with those obtained in previous radio observations, while for the other five SNRs (G18.1-0.1, G18.9-1.1, Kes 69, 3C 396, W49B), they are significantly different. We discuss the velocity discrepancies in these five SNRs. In G9.9-0.8, the H2 emission shows non-thermal line ratios and very narrow line width (~4 km s-1), and we discuss its origin.

  • PDF

Development of Measuring Technique for Milk Composition by Using Visible-Near Infrared Spectroscopy (가시광선-근적외선 분광법을 이용한 유성분 측정 기술 개발)

  • Choi, Chang-Hyun;Yun, Hyun-Woong;Kim, Yong-Joo
    • Food Science and Preservation
    • /
    • v.19 no.1
    • /
    • pp.95-103
    • /
    • 2012
  • The objective of this study was to develop models for the predict of the milk properties (fat, protein, SNF, lactose, MUN) of unhomogenized milk using the visible and near-infrared (NIR) spectroscopic technique. A total of 180 milk samples were collected from dairy farms. To determine optimal measurement temperature, the temperatures of the milk samples were kept at three levels ($5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$). A spectrophotometer was used to measure the reflectance spectra of the milk samples. Multilinear-regression (MLR) models with stepwise method were developed for the selection of the optimal wavelength. The preprocessing methods were used to minimize the spectroscopic noise, and the partial-least-square (PLS) models were developed to prediction of the milk properties of the unhomogenized milk. The PLS results showed that there was a good correlation between the predicted and measured milk properties of the samples at $40^{\circ}C$ and at 400~2,500 nm. The optimal-wavelength range of fat and protein were 1,600~1,800 nm, and normalization improved the prediction performance. The SNF and lactose were optimized at 1,600~1,900 nm, and the MUN at 600~800 nm. The best preprocessing method for SNF, lactose, and MUN turned out to be smoothing, MSC, and second derivative. The Correlation coefficients between the predicted and measured fat, protein, SNF, lactose, and MUN were 0.98, 0.90, 0.82, 0.75, and 0.61, respectively. The study results indicate that the models can be used to assess milk quality.

Evaluation of Feed Values for Imported Hay Using Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 수입 건초의 사료가치 평가)

  • Park, Hyung Soo;Kim, Ji Hye;Choi, Ki Choon;Oh, Mirae;Lee, Ki-Won;Lee, Bae Hun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.258-263
    • /
    • 2019
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages. The objective of this study was to evaluate the potential of NIRS, applied to imported forage, to estimate the moisture and chemical parameters for imported hays. A population of 392 imported hay representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1 nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation(R2) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS predicted the chemical parameters with very high degree of accuracy. The R2 and SECV for imported hay calibration were 0.92(SECV 0.61%) for moisture, 0.98(SECV 0.65%) for acid detergent fiber, 0.97(SECV 0.40%) for neutral detergent fiber, 0.99(SECV 0.06%) for crude protein and 0.97(SECV 3.04%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of imported hay in Korea for routine analysis method to evaluate the feed value.

Changes in the Hyperspectral Characteristics of Wheat Plants According to N Top-dressing Rates at Various Growth Stages (밀에서 질소 시비 조건에 따른 생육 단계별 초분광 특성 변화)

  • Jung, Jae Gyeong;Lee, Yeong Hun;Choi, Jae Eun;Song, Gi Eun;Ko, Jong Han;Lee, Kyung Do;Shim, Sang In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.377-385
    • /
    • 2020
  • Recently, wheat consumption has been increasing in Korea, requiring increased production. Nitrogen fertilization is a critical determinant in crop yield; therefore, it is necessary to optimize the nitrogen fertilization regime with current trends that emphasize the minimum impact of nitrogen fertilizer on the environment. In this study, both nondestructive spectral analysis using a hyperspectral camera and growth analysis were performed to determine the optimal N top-dressing rates after heading. The nitrogen application regimes consisted of three conditions according to the secondary top-dressing rate: N4:3:0 (0 kg 10 a-1), N4:3:3 (2.73 kg 10 a-1), and N4:3:6 (5.46 kg 10 a-1). Subsequently, growth and physiological investigations were performed at the jointing, heading, and ripening stages of wheat, and spectral investigations were conducted. On April 29, as the nitrogen fertilization rate was increased to N4:3:3 and N4:3:6, plant height and grain yield increased by 4% and 8%, and 8% and 52%, respectively, compared to those under N4:3:0. Leaf area index and SPAD value also increased by 13% and 24%, and 32% and 43%, respectively. The R (red), G (green), and B (blue) of leaf color were lowered by 15, 11, and 4 in N4:3:3 and 44, 34, and 18 in N4:3:6, respectively, as compared to the control. Grain yield was the highest at high top-dressing (N4:3:6), however, there was no difference between no top-dressing (N4:3:0) and intermediat top-dressing (N4:3:3). The reflectance analyzed using a hyperspectral camera showed a difference in the near-infrared (NIR) region on March 19, and on April 29, there was a difference both in the visible light region greater than 550 nm and the NIR region. Vegetation indices differed according to fertilization regime, except for the greenness index (GI). The results of this study showed that not only growth and physiological analysis but also spectral indices can be used to optimize the nitrogen top-dressing rate.

Fast Systemic Evaluation of Amylose and Protein Contents in Collected Rice Landraces Germplasm Using Near-Infrared Reflectance Spectroscopy (NIRS) (근적외선 분광분석기를 이용한 국내외 재래종 벼 유전자원의 아밀로스 및 단백질에 관한 대량 평가 체계구축)

  • Oh, Sejong;Lee, Myung Chul;Choi, Yu Mi;Lee, Sukyeung;Rauf, Muhammad;Chae, Byungsoo;Hyun, Do Yoon
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.450-465
    • /
    • 2017
  • This study was conducted to characterize the amylose and protein contents of 4,948 rice landrace germplasm using the NIRS model developed in the previous study. The average amylose content of the germplasm was 20.39% and ranged between 3.97 and 37.13%. The amylose contents in the standard rice were 4.99, 18.63 and 20.55% in Sinseonchal, Chucheong and Goami, respectively. The average protein content was 8.17% and ranged from 5.20 to 17.45%. Protein contents in Sinseonchal, Chucheong and Goami were 6.824, 6.869 and 7.839%, respectively. A total of 62% germplasm were distributed between 20.06% and 27.02% in amylose content. Germplasm of 81.60% represented protein content of 6.78-9.75%. The distinguishable ranges of amylose contents according to origin were 16.58-20.06% in Korea, 20.06-23.25% in Japan, 23.25-27.02% in North Korea, and 27.02-37.13% in China. In the protein content, approximately 30% of Chinese resources ranged from 9.75 to 17.45%, whereas less than 10% were detected in other origin accessions. Fifty resources were selected with low and high amylose ranging from 3.97-6.66% and 30.41-37.13%, respectively. Similarly, fifty resources were selected with low and high protein ranging from 5.20-6.09% and 13.21-17.45%, respectively. Landraces with higher protein could be adapted to practical utilization of food sources.

Design and characterization of conductive transparent filter using [TiO2|Ti|Ag|TiO2] multilayer ([TiO2|Ti|Ag|TiO2] 다층구조를 이용한 전도성 투과필터의 설계 및 특성분석)

  • Lee, Seung-Hyu;Lee, Jang-Hoon;Hwangbo, Chang-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.363-369
    • /
    • 2002
  • We have designed conductive transparent filters using a low-emissivity coating such as [dielectric|Ag|dielectric] for display applications. The design is the repetition of [$TiO_{2}$|Ti|Ag |$TiO_{2}$] to increase the transmittance in the visible and decrease the transmittance in the near IR. The conductive transparent filters are deposited by a radio frequency(RF) magnetron sputtering system. The optical, structural and electrical properties of the filters were investigated and the optical spectra are compared with simulated spectra. The thickness of the deposited Ag films is above 13 ㎚ to increase the conductivity and that of $TiO_{2}$ films is 24 ㎚ to increase the transmittance in the visible range. Ti blockers are employed to prevent the Ag films from being oxidized by an oxygen gas during the reactive sputtering process. Also, it is shown that the thicker Ti film is necessary as the period increases. Finally, a filter with repetition of the basic structure three times shows the better cut-off near infrared(NIR) and the sheet resistance as low as 2Ω/□ which is enough to shield an unnecessary electromagnetic waves for a display panel.

A Comparative Study of Vegetation Phenology Using High-resolution Sentinel-2 Imagery and Topographically Corrected Vegetation Index (고해상도 Sentinel-2 위성 자료와 지형효과를 고려한 식생지수 기반의 산림 식생 생장패턴 비교)

  • Seungheon Yoo;Sungchan Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.2
    • /
    • pp.89-102
    • /
    • 2024
  • Land Surface Phenology (LSP) plays a crucial role in understanding vegetation dynamics. The near-infrared reflectance of vegetation (NIRv) has been increasingly adopted in LSP studies, being recognized as a robust proxy for gross primary production (GPP). However, NIR v is sensitive to the terrain effects in mountainous areas due to artifacts in NIR reflectance cannot be canceled out. Because of this, estimating phenological metrics in mountainous regions have a substantial uncertainty, especially in the end of season (EOS). The topographically corrected NIRv (TCNIRv) employs the path length correction (PLC) method, which was deduced from the simplification of the radiative transfer equation, to alleviate limitations related to the terrain effects. TCNIRv has been demonstrated to estimate phenology metrics more accurately than NIRv, especially exhibiting improved estimation of EOS. As the topographic effect is significantly influenced by terrain properties such as slope and aspect, our study compared phenology metrics estimations between south-facing slopes (SFS) and north-facing slopes (NFS) using NIRv and TCNIRv in two distinct mountainous regions: Gwangneung Forest (GF) and Odaesan National Park (ONP), representing relatively flat and rugged areas, respectively. The results indicated that TCNIR v-derived EOS at NFS occurred later than that at SFS for both study sites (GF : DOY 266.8/268.3 at SFS/NFS; ONP : DOY 262.0/264.8 at SFS/NFS), in contrast to the results obtained with NIRv (GF : DOY 270.3/265.5 at SFS/NFS; ONP : DOY 265.0/261.8 at SFS/NFS). Additionally, the gap between SFS and NFS diminished after topographic correction (GF : DOY 270.3/265.5 at SFS/NFS; ONP : DOY 265.0/261.8 at SFS/NFS). We conclude that TCNIRv exhibits discrepancy with NIR v in EOS detection considering slope orientation. Our findings underscore the necessity of topographic correction in estimating photosynthetic phenology, considering slope orientation, especially in diverse terrain conditions.

Non Destructive Fast Determination of Fatty Acid Composition by Near Infrared Reflectance Spectroscopy in Sesame

  • Kang, Churl-Whan;Kim, Dong-Hwi;Lee, Sung-Woo;Kim, Ki-Jong;Cho, Kyu-Chae;Shim, Kang-Bo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.283-291
    • /
    • 2006
  • To investigate seed non destructive and fast determination technique utilizing near infrared reflectance spectroscopy (NIRs) for screening ultra high oleic (C18:1) and linoleic (C18:2) fatty acid content sesame varieties among genetic resources and lines of pedigree generations of cross and mutation breeding were carried out in National Institute of Crop Science (NICS). 150 among 378 landraces and introduced cultivars were released to analyse fatty acids by NIRs and gas chromatography (GC). Average content of each fatty acid was 9.64% in palmitic acid (C16:0), 4.73% in stearic acid (C18:0), 42.26% in oleic acid and 43.38% in linoleic acid by GC. The content range of each fatty acid was from 7.29 to 12.27% in palmitic, 6.49% from 2.39 to 8.88% in stearic, 12.59% of wider range compared to that of stearic and palmitic from 37.36 to 49.95% in oleic and of the widest from 30.60 to 47.40% in linoleic acid. Spectrums analyzed by NIRs were distributed from 400 to 2,500 nm wavelengths and varietal distribution of fatty acids were appeared as regular distribution. Varietal differences of oleic acid content good for food processing and human health by NIRs was 14.08% of which 1.49% wider range than that of GC from 38.31 to 52.39%. Varietal differences of linoleic acid content by NIRs was 16.41% of which 0.39% narrower range than that of GC from 30.60 to 47.01%. Varietal differences of oleic and linoleic acid content in NIRs analysis were appeared relatively similar inclination compared with those of GC. Partial least square regression (PLSR) among multiple variant regression (MVR) in NIRs calibration statistics was carried out in spectrum characteristics on the wavelength from 700 to 2,500 nm with oleic and linoleic acids. Correlation coefficient of root square (RSQ) in oleic acid content was 0.724 of which 72.4 percent of sample varieties among all distributed in the range of 0.570 percent of standard error when calibrated (SEC) which were considerably acceptable in statistic confidence significantly for analysis between NIRs and GC. Standard error of cross validation (SECV) of oleic acid was 0.725 of which distributed in the range of 0.725 percent standard error among the samples of mother population between analyzed value by NIRs analysis and analyzed value by GC. RSQ of linoleic acid content was 0.735 of which 73.5 percent of sample varieties among all distributed in the range of 0.643 percent of SEC. SECV of linoleic acid was 0.711 of which distributed in the range of 0.711 percent standard error among the samples of mother population between NIRs analysis and GC analysis. Consequently, adoption NIR analysis for fatty acids of oleic and linoleic instead that of GC was recognized statistically significant between NIRs and GC analysis through not only majority of samples distributed in the range of negligible SEC but also SECV. For enlarging and increasing statistic significance of NIRs analysis, wider range of fatty acids contented sesame germplasm should be kept on releasing additionally for increasing correlation coefficient of RSQ and reducing SEC and SECV in the future.

NIRS AS AN ESSENTIAL TOOL IN FOOD SAFETY PROGRAMS: FEED INGREDIENTS PREDICTION H COMMERCIAL COMPOUND FEEDING STUFFS

  • Varo, Ana-Garrido;MariaDoloresPerezMarin;Cabrera, Augusto-Gomez;JoseEmilioGuerrero Ginel;FelixdePaz;NatividadDelgado
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1153-1153
    • /
    • 2001
  • Directive 79/373/EEC on the marketing of compound feeding stuffs, provided far a flexible declaration arrangement confined to the indication of the feed materials without stating their quantity and the possibility was retained to declare categories of feed materials instead of declaring the feed materials themselves. However, the BSE (Bovine Spongiform Encephalopathy) and the dioxin crisis have demonstrated the inadequacy of the current provisions and the need of detailed qualitative and quantitative information. On 10 January 2000 the Commission submitted to the Council a proposal for a Directive related to the marketing of compound feeding stuffs and the Council adopted a Common Position (EC N$^{\circ}$/2001) published at the Official Journal of the European Communities of 2. 2. 2001. According to the EC (EC N$^{\circ}$ 6/2001) the feeds material contained in compound feeding stufs intended for animals other than pets must be declared according to their percentage by weight, by descending order of weight and within the following brackets (I :< 30%; II :> 15 to 30%; III :> 5 to 15%; IV : 2% to 5%; V: < 2%). For practical reasons, it shall be allowed that the declarations of feed materials included in the compound feeding stuffs are provided on an ad hoc label or accompanying document. However, documents alone will not be sufficient to restore public confidence on the animal feed industry. The objective of the present work is to obtain calibration equations fur the instanteneous and simultaneous prediction of the chemical composition and the percentage of ingredients of unground compound feeding stuffs. A total of 287 samples of unground compound feeds marketed in Spain were scanned in a FOSS-NIR Systems 6500 monochromator using a rectangular cup with a quartz window (16 $\times$ 3.5 cm). Calibration equations were obtained for the prediction of moisture ($R^2$= 0.84, SECV = 0.54), crude protein ($R^2$= 0.96, SECV = 0.75), fat ($R^2$= 0.86, SECV = 0.54), crude fiber ($R^2$= 0.97, SECV = 0.63) and ashes ($R^2$= 0.86, SECV = 0.83). The sane set of spectroscopic data was used to predict the ingredient composition of the compound feeds. The preliminary results show that NIRS has an excellent ability ($r^2$$\geq$ 0, 9; RPD $\geq$ 3) for the prediction of the percentage of inclusion of alfalfa, sunflower meal, gluten meal, sugar beet pulp, palm meal, poultry meal, total meat meal (meat and bone meal and poultry meal) and whey. Other equations with a good predictive performance ($R^2$$\geq$0, 7; 2$\leq$RPD$\leq$3) were the obtained for the prediction of soya bean meal, corn, molasses, animal fat and lupin meal. The equations obtained for the prediction of other constituents (barley, bran, rice, manioc, meat and bone meal, fish meal, calcium carbonate, ammonium clorure and salt have an accuracy enough to fulfill the requirements layed down by the Common Position (EC Nº 6/2001). NIRS technology should be considered as an essential tool in food Safety Programs.

  • PDF