Browse > Article
http://dx.doi.org/10.7740/kjcs.2020.65.4.377

Changes in the Hyperspectral Characteristics of Wheat Plants According to N Top-dressing Rates at Various Growth Stages  

Jung, Jae Gyeong (Department of Agronomy, Gyeongsang National University)
Lee, Yeong Hun (Department of Agronomy, Gyeongsang National University)
Choi, Jae Eun (Department of Agronomy, Gyeongsang National University)
Song, Gi Eun (Department of Agronomy Applied Biological Science, Applied Biology (BK Plus), Gyeongsang National University)
Ko, Jong Han (Applied Plant Science, Chonnam National University)
Lee, Kyung Do (Department of Agricultural Enviroment, National Institute of Agricultural Sciences)
Shim, Sang In (Department of Agronomy, Gyeongsang National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.65, no.4, 2020 , pp. 377-385 More about this Journal
Abstract
Recently, wheat consumption has been increasing in Korea, requiring increased production. Nitrogen fertilization is a critical determinant in crop yield; therefore, it is necessary to optimize the nitrogen fertilization regime with current trends that emphasize the minimum impact of nitrogen fertilizer on the environment. In this study, both nondestructive spectral analysis using a hyperspectral camera and growth analysis were performed to determine the optimal N top-dressing rates after heading. The nitrogen application regimes consisted of three conditions according to the secondary top-dressing rate: N4:3:0 (0 kg 10 a-1), N4:3:3 (2.73 kg 10 a-1), and N4:3:6 (5.46 kg 10 a-1). Subsequently, growth and physiological investigations were performed at the jointing, heading, and ripening stages of wheat, and spectral investigations were conducted. On April 29, as the nitrogen fertilization rate was increased to N4:3:3 and N4:3:6, plant height and grain yield increased by 4% and 8%, and 8% and 52%, respectively, compared to those under N4:3:0. Leaf area index and SPAD value also increased by 13% and 24%, and 32% and 43%, respectively. The R (red), G (green), and B (blue) of leaf color were lowered by 15, 11, and 4 in N4:3:3 and 44, 34, and 18 in N4:3:6, respectively, as compared to the control. Grain yield was the highest at high top-dressing (N4:3:6), however, there was no difference between no top-dressing (N4:3:0) and intermediat top-dressing (N4:3:3). The reflectance analyzed using a hyperspectral camera showed a difference in the near-infrared (NIR) region on March 19, and on April 29, there was a difference both in the visible light region greater than 550 nm and the NIR region. Vegetation indices differed according to fertilization regime, except for the greenness index (GI). The results of this study showed that not only growth and physiological analysis but also spectral indices can be used to optimize the nitrogen top-dressing rate.
Keywords
hyperspectral reflectance; N top-dressing; vegetation index; wheat;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wijitdechakul, J., S. Sasaki, Y. Kiyoki, and C. Koopipat. 2016. UAV-based multispectral image analysis system with semantic computing for agricultural health conditions monitoring and real-time management. International Electronics Symposium (IES). pp. 459-464.
2 Wu, C., Z. Niu, Q. Tang, and W. Huang. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agr. Forest. Meterol. 148 : 1230-1241.   DOI
3 Amanullah, K., B. Marwat, P. Shah, N. Maula, and S. Arifullah. 2009. Nitrogen levels and its time of application influence leaf area, height and biomass of maize planted at low and high density. Pak. J. Bot. 41 : 761-768.
4 Ashourloo, D., M. R. Mobasheri, and A. Huete. 2014. Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements. Remote. Sens. 6 : 5107-5123.   DOI
5 Behmann, J., J. Steinrucken, and Lutz. Plumer, P. 2014. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote. Sens. 93 : 98-111.   DOI
6 Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth. 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB Imaging. Remote. Sens. 6 : 10395-10412.   DOI
7 Birth, G. S. and G. R. McVey. 1968. Measuring the color of growing turf with a reflectance spectrophotometer. J. Agron. 60 : 640-643.   DOI
8 Blackburn, G. A. 1999. Relationship between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves. Remote. Sens. Environ. 70 : 224-237.   DOI
9 Xu, J., H. Cai, X. Wang, C. Ma, Y. Lu, Y. Ding, X. Wang, H. Chen, Y. Wang, and Q. Saddique. 2019. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agric. Water. Manag. 228 : 105904.
10 Xingyun, L., T. Zhang, X. Lu, D. S. Ellsworth, H. BassiriRad, C. You, D. Wang, P. He, Q. Deng, H. Liu, J. Mo, and Q. Ye. 2019. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Glob. Chang. Biol. 26 : 3585-3600.   DOI
11 Zarco-Tejada, P. J., V. Gonzalez-Dugo, and J. A. Berni. 2012. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote. Sens. Environ. 117 : 322-337.   DOI
12 Zhang, L., Y. Niu, H. Zhang, W. Han, G. Li, J. Tang, and X. Peng. 2019. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front. Plant. Sci. 10 : 1-18.   DOI
13 Zheng, T., P. F. Qi, Y. L. Cao, Y. N. Han, H. L. Ma, Z. R. Guo, Y. Wang, Y. Y. Qiao, S. Y. Hua, H. Y. Yu, J. P. Wang, J. Zhu, C. Y. Zhou, Y. Z. Zhang, Q. Chen, L. Kong, J. R. Wang, Q. T. Jiang, Z. H. Yan, X. J. Lan, G. Q. Fan, Y. M. Wei, and Y. L. Zheng. 2018. Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Sci. Rep. 8 : 11928.   DOI
14 Mahlein, A. K., U. Steiner, H. W. Dehne, and E. C. Oerke. 2010. Spectral signature of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 11 : 413-431.   DOI
15 Li, F., Y. Miao, S. D. Hennig, M. L. Gnyp, X. Chen, L. Jia, and G. Bareth. 2010. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 11 : 335-357.   DOI
16 Li, B., X. Xu, J. Han, L. Zhang, C. Bian, L. Jin, and J. Liu. 2019. The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods. 15 : 15.   DOI
17 Luo, L., Y. Zhang, and G. Xu. 2020. How does nitrogen shape plant architecture? J. Exp. Bot. 71 : 4415-4427.   DOI
18 McKinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140 : 315-322.   DOI
19 Merzlyak, M. N., A. A. Gitelson, O. B. Chivkunova, and V. Y. Rakitin. 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 106 : 135-141.   DOI
20 Mishra, P., M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders. 2017. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 164 : 49-67.   DOI
21 Moran, R. 1982. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol. 69 : 1376-1381.   DOI
22 Nebiker, S., M. Abacherli, N. Lack, and S. Laderach. 2016. Lightweight multispectral UAV sensors and their capabilities for predicting grain yield and detecting plant diseases. ISPRS-Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 963-970.
23 Lelong, C. C. D., P. C. Pinet, and H. Poilve. 1998. Hyperspectral imaging and stress mapping in agriculture. Remote. Sens. Environ. 66 : 179-191.   DOI
24 Cho, S. W., C. S. Kang, T. G. Kang, K. M. Cho, and C. S. Park. 2018. Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat. J. Integr. Agric. 17 : 982-993.   DOI
25 Calderon, R., J. A. Navas-Cortes, C. Lucena, and P. J. Zarco-Tejada. 2013. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote. Sens. Environ. 139 : 231-245.   DOI
26 Cao, X., Y. Luo, Y. Zhou, J. Fan, X. Xu, J. S. West, X. Xiayu, and D. Cheng. 2015. Detection of powdery mildew in two winter wheat plant densities and prediction of grain yield using canopy hyperspectral reflectance. PLoS One. 10 : 1-14.
27 Carter, G. A. 1993. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 80 : 239-243.   DOI
28 Darvishzadeh, R., A. Skidmore, C. Atzberger, and S. V. Wieren. 2008. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth. OBS. 10 : 358-373.   DOI
29 Datt, B. 1999. A New reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J. Plant. Physiol. 154 : 30-36.   DOI
30 FAO. 2020. Food outlook - Biannual report on global food markets. pp. 11-16.
31 Feng, W., X. Yao, Y. Zhu, Y. C. Tian, and W. X. Cao. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 28 : 394-404.   DOI
32 Penuelas, J. and I. Filella. 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends. Plant. Sci. 3 : 151-156.   DOI
33 Filella, I., L. Serrano, J. Serra, and J. Penuelas. 1995. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop. Sci. 35 : 1400-1405.   DOI
34 Fritschi, F.B. and J. D. Ray. 2007. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica. 45 : 92-98.   DOI
35 Netto, A. T., E. Campostrini, J. G. de. Oliveira, and R. E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 104 : 199-209.   DOI
36 Nutter, F. W. 1989. Detection and measurement of plant disease gradients in peanut with a multispectral radiometer. Phytopathol. 79 : 958-963.   DOI
37 Penuelas, J., B. Frederic, and I. Filella. 1995. Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica. 31 : 221-230.
38 Reyniers, M., D. J. J. Walvoort, and J. De Baardemaaker, 2006. A linear model to predict with a multi‐spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote. Sens. 27 : 4159-4179.   DOI
39 Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In Proc. Third ERTS Symposium. NASA SP-351. 1 : 301-317.
40 Rumpf, T., A. K. Mahlein, U. Steiner, E. C. Oerke, H. W. Dehne, and L. Plumer. 2010. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Compute. Electron. Agric. 74 : 91-99.   DOI
41 Siegal, B. S. and A. F. H. Goetz. 1977. Effect of vegetation on rock and soil type discrimination, Photogramm. Eng. Rem. S. 43 : 191-196.
42 Sims, D. A. and J. A. Gamon. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote. Sens. Environ. 81 : 337-354.   DOI
43 Vogelmann, J. E., B. N. Rock, and D. M. MOSS, 1993. Red edge spectral measurements from sugar maple leaves. Int. J. Remote. Sens. 14 : 1563-1575.   DOI
44 Gitelson, A. A. and M. N. Merzlyak. 1998. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space. Res. 22 : 689-692.   DOI
45 Gamon, J. A., J. Penuelas, and C. B. Field. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote. Sens. Environ. 41 : 35-44.   DOI
46 Gitelson, A. and M. N. Merzlyak. 1994. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation. J. Plant. Physiol. 143 : 286-292.   DOI
47 Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote. Sens. Environ. 58 : 289-298.   DOI
48 Han, L., G. Yang, H. Dai, B. Xu, H. Yang, H. Feng, Z. Li, and X. Yang. 2019. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods. 15 : 10.   DOI
49 Gitelson, A. A., Y. Gritz, and M. N. Merzlyak. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant. Physiol. 160 : 271-282.   DOI
50 Goetz, A. F. H. 2009. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote. Sens. Environ. 113 : S5-S16.   DOI
51 Ivushkin, K., H. Bartholomeus, A. K. Bregt, A. Pulatov, H. D. Franceschini, H. Kramer, E. N. van Loo, V. J. Roman, and R. Finkers. 2018. UAV based soil salinity assessment of cropland. Geoderma. 338 : 502-512.   DOI
52 Kong, L., Y. Xie, L. Hu, J. Si, and Z. Wang. 2017. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci. Rep. 7 : 43363.   DOI
53 KOSTAT. 2020. 2019 Food Grain Consumption Survey. pp. 17-30.