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ABSTRACT

Land Surface Phenology (LSP) plays a crucial role in understanding vegetation dynamics. 

The near-infrared reflectance of vegetation (NIRv) has been increasingly adopted in LSP 

studies, being recognized as a robust proxy for gross primary production (GPP). However, 

NIRv is sensitive to the terrain effects in mountainous areas due to artifacts in NIR 

reflectance cannot be canceled out. Because of this, estimating phenological metrics in 

mountainous regions have a substantial uncertainty, especially in the end of season (EOS). 

The topographically corrected NIRv (TCNIRv) employs the path length correction (PLC) 

method, which was deduced from the simplification of the radiative transfer equation, to 

alleviate limitations related to the terrain effects. TCNIRv has been demonstrated to estimate 

phenology metrics more accurately than NIRv, especially exhibiting improved estimation of 

EOS. As the topographic effect is significantly influenced by terrain properties such as slope 

and aspect, our study compared phenology metrics estimations between south-facing slopes 

(SFS) and north-facing slopes (NFS) using NIRv and TCNIRv in two distinct mountainous 

regions: Gwangneung Forest (GF) and Odaesan National Park (ONP), representing relatively 

flat and rugged areas, respectively. The results indicated that TCNIRv-derived EOS at NFS 

occurred later than that at SFS for both study sites (GF : DOY 266.8/268.3 at SFS/NFS; 

ONP : DOY 262.0/264.8 at SFS/NFS), in contrast to the results obtained with NIRv (GF : 

DOY 270.3/265.5 at SFS/NFS; ONP : DOY 265.0/261.8 at SFS/NFS). Additionally, the gap 

between SFS and NFS diminished after topographic correction (GF : DOY 270.3/265.5 at 

SFS/NFS; ONP : DOY 265.0/261.8 at SFS/NFS). We conclude that TCNIRv exhibits 

discrepancy with NIRv in EOS detection considering slope orientation. Our findings 

underscore the necessity of topographic correction in estimating photosynthetic phenology, 

considering slope orientation, especially in diverse terrain conditions. 
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I. Introduction

Land Surface Phenology (LSP) is a field of study 

that focuses on the plant growth stages in vegetated 

land surfaces using remote sensing technologies (de 

Beurs & Henebry, 2004; Yang & Fan, 2023; Zeng 

et al., 2020). These phenological metrics encompass 

the start of the growing season (SOS) and the end 

of the growing season (EOS). These serve as proxies 

for the spring and autumn phenophases, facilitating 

the vegetation phenological dynamics monitoring at 

the landscape level (Karami et al., 2018; 

Rodriguez-Galiano et al., 2015). Satellite-based LSP 

plays a pivotal role in monitoring plant phenology 

due to the advantage of expansive coverage compared 

to in situ measurements taken with radiometric 

instruments, flux tower, and airborne observations 

(Dash & Ogutu, 2016; Wang et al., 2017).

The analysis of LSP primarily relies on vegetation 

indices (VIs) and other biophysical variables derived 

from optical remote sensing datasets (Caparros- 

Santiago et al., 2021). Recent studies have 

established that near-infrared reflectance of 

vegetation (NIRv) represents a more suitable option 

for extracting phenology metrics compared to other 

VIs such as the normalized difference vegetation 

index (NDVI) (Badgley et al., 2017; Yin et al., 

2020a). While NDVI is widely employed for LSP 

studies (Caparros-Santiago et al., 2021), it has 

following limitations: NDVI is sensitive to variations 

in soil background and understories, resulting in the 

insensitivity to gross primary production (GPP), 

particularly in areas with high biomass due to 

saturation effects (Huete et al., 2002). The 

near-infrared reflectance (NIR) was known to be a 

more robust proxy of GPP than NDVI, if the 

vegetated signal is separated from non-vegetated 

reflectance (Badgley et al., 2017). NIRv is the 

production of NDVI and NIR, and it is known that 

NIRv specifically captures NIR from vegetation and 

minimizes the influence of background soil, thereby 

addressing saturation problems in dense vegetation 

(Badgley et al., 2017; Baldocchi et al., 2020). SOS 

estimated from NIRv shows good consistency with 

GPP-derived estimates but EOS estimated from NIRv 

lags significantly behind GPP-derived EOS (Yang et 

al., 2022). It is grounded in the primary factors that 

constrain photosynthesis, exhibiting variations across 

distinct growth stages. During spring, the chlorophyll 

content predominantly influences the rate of carbon 

sequestration, making NIRv sensitive to chlorophyll 

content (Raddi et al., 2022) and enabling a reliable 

estimation of the SOS. In autumn, plant 

photosynthesis encounters limitations due to the 

diminishing availability of illumination conditions 

caused by the rapid decline in solar radiation (Zhang 

et al., 2020). Consequently, even though chlorophyll 

is still present, plants are unable to harness sufficient 

light for photosynthesis. This delay results in a tardy 

estimation of the EOS through NIRv extraction.

In mountainous areas, topography significantly 

affects illumination conditions at sloped surfaces 

(Wen et al., 2009) and makes phenology monitoring 

difficult. The band ratio-based VIs (e.g., NDVI) can 

partially alleviate such distortion due to the similar 

topographic influences in relative terms on the red 

and near infrared (NIR) spectral band reflectances. 

However, VIs without a band ratio format such as 

NIRv, prove to be more sensitive to topographic 

effects (Chen et al., 2020). The path length correction 

(PLC) is one of the topographic correction methods 

based on the classic radiative transfer equation (Yin 

et al., 2018). The PLC method aims to convert the 

reflectance from an inclined surface to its equivalent 

over a horizontal surface (Yin et al., 2018). The PLC 

method has a solid physical foundation as it relies 

on physics-based parameters rather than empirical 

parameters. Additionally, it demonstrates high 

topographic correction performance through simple 

mathematic calculation (Chen et al., 2023a; Yin et 

al., 2020b).

The topographically corrected NIRv (TCNIRv) is 

suggested as one of the solutions for topographic 

effects using PLC methods (Chen et al., 2023b). The 

recent studies suggested that TCNIRv shows high 

co-relationship with GPP (Chen et al., 2022) and 
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makes good estimation of phenological metrics, 

especially improving EOS estimation performance 

(Chen et al., 2023b). 

But to the best of our knowledge, there are only 

few LSP studies using TCNIRv and the 

photosynthetic phenology with respect to slope 

orientation derived from TCNIRv is still not clear 

even though TCNIRv calculation is based on such 

topographic properties. We propose the need to 

separate the results by slope orientation to precisely 

observe the impact of topographic correction on 

phenology metrics extraction. For this study, we 

pursued two objectives : (1) clarify the difference 

between phenology metrics derived from NIRv and 

TCNIRv and (2) whether the phenology metrics at 

south-facing-slope (SFS) statistically differs from that 

at north-facing-slope (NFS). 

II. Materials and Methods

2.1. Study area

We conducted the research in South Korea, which 

is located in the Northeast Asia. We selected two 

study areas as mountainous areas with different 

topography aligned on similar latitude (Fig. 1) to 

compare the effect of topographic correction 

depending on the topography features (i.e., slope and 

aspect). Gwangneung Forest (GF), relatively flat and 

simple terrain with elevation ranging from 90 to 428 

m (Fig. 1(a)). The average elevation at GF is about 

184.2m and mean slope is about 13.9°. Odaesan 

National Park (ONP) has dynamic elevation level 

ranging from 234 to 1561m (Fig. 1(b)). The average 

elevation at ONP is about 962.0m and mean slope 

is about 24.3°.

Fig. 1. Elevation map for the study areas (a) Gwangneung Forest and (b) Odaesan National Park. 

(c) GF and ONP are on similar latitudes, but have significant differences in topographic features.
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2.2. Data Acquisition and Preparation

We selected the images with a higher spatial 

resolution than those typically adopted in LSP studies 

to observe the topographic effect on phenology 

estimation in detail, considering the topographic 

features. Sentinel-2 L2 images have 10m spatial 

resolution with 5-day frequency, which is 

atmospherically corrected with Sen2Cor algorithm. 

We acquired Sentinel-2 L2 images from Google Earth 

Engine (GEE) spanning from 2019 to 2022. We 

filtered out cloud contaminated pixels by GEE 

algorithms and only the images with at least 70% 

of clear pixels were retained for the research. We 

illustrated the day of the year (DOY) of the adopted 

data in Fig. 2.

We needed 10m resolution Digital Elevation 

Model (DEM) to overlap with Sentinel-2 L2 images. 

We obtained digital topographic map in shape file 

from National Spatial Data Infrastructure Portal and 

used ArcGIS 10.5 to create DEM in 10m pixel size. 

Fig. 3. Process flowchart for (1) NIRv and TCNIRv construction, (2) smoothing methods for time series,

(3) division to SFS and NFS, (4) phenology extraction methods, analyzing uncertainty, and finally

comparing phenology metrics focusing on three main points : SOS/EOS, NIRv/TCNIRv, SFS/NFS.

Fig. 2. The distribution of the Sentinel-2 L2 data which are adopted for the study, according to DOY. 

Each dot represents the DOY of the data adopted for each year. The data with more than 30% 

cloud pixels are excluded. (a) and (b) shows the data distribution for GF and ONP, respectively.
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2.3. Methods

We calculated slope and aspect from DEM with 

Horn’s algorithm (Horn, 1981) from 10m resolution 

DEM. These are used for calculating TCNIRv with 

NIRv derived from Sentinel-2 L2 images by PLC 

method. Then we smoothed NIRv and TCNIRv time 

series with Savitzky-Golay filter and applied 

threshold method for phenology extraction. Then we 

checked the uncertainties for phenology metrics by 

changing threshold in set range (Wang et al., 2019). 

Finally, we calculated SOS and EOS at NFS and SFS 

derived from NIRv and TCNIRv for each pixel and 

compared the distribution of those.

2.3.1. NIRv and TCNIRv calculation

NIRv and TCNIRv is calculated with following 

equations : 

(1)

(2)

TCNIRv is calculated with PLC method, multiplying 

correction coefficient to NIRv. Ω1 is the solar 

direction and Ω2 is the viewing direction, including 

informations of zenith angle and azimuth angle. S and 

St are the path length on different topographic 

features, flat and sloping terrain, respectively. In 

Equation (2), we multiply NIRv by the ratio of the 

total path length over a horizontal surface to the total 

path length over an inclined surface under the same 

conditions except for the slope of the terrain. The 

factors in the correcting coefficient is calculated with 

following equations :

(3)

(4)

θ is zenith angle and  φ is azimuth angle, using these 

of solar angles for S(Ω1) and St(Ω1), and viewing 

angles for S(Ω2) and St(Ω2). α and β stand for slope 

and aspect angles calculated from DEM, respectively. 

2.3.2. SFS and NFS

We targeted only south and north facing slopes to 

check the impact of the topographic correction to the 

phenology pattern. As we calculated aspect from 

DEM, we defined SFS as 90°-270°, NFS as 0°-90° 

and 270°-360°. Fig. 4 shows the pixels of SFS and 

NFS for each study site.

Fig. 4. Denoting the pixels of north and south slope. (a) and (b) are reclassified DEM for GF and ONP,

respectively. The black pixels and white pixels are representing north side and south side of the

mountain, respectively.
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2.4. Land Surface Phenology Metrics Calculation

Sentinel-2 offers relatively high temporal 

frequencies as 5-day interval, but substantial amount 

of data, particularly during the summer, is discarded 

due to cloud contaminations (Fig. 2). To mitigate the 

noise impacts, we applied the Savitzky-Golay filter 

to smooth NIRv and TCNIRv time series. Then, we 

calculated SOS and EOS using a threshold expressed 

as a percentage, considering the minimum and 

maximum values of VI (White et al., 1997). SOS 

is defined as DOY on which VI reaches a specific 

upward threshold, while EOS is determined as the 

point at which the adjusted curve crosses a specific 

downward threshold (Caparros-Santiago et al., 

2021).

However, the threshold method has a limitation 

that the threshold is arbitrary, and phenology metrics 

can be altered by the threshold, even using the same 

VI time series data (Caparros-Santiago et al., 2021). 

Focusing on the differences of phenology metrics 

between SFS and NFS, our primary objective was 

to observe the distributions of SOS and EOS derived 

from various thresholds. We calculated phenology 

metrics by adjusting thresholds from 15% to 50% 

with a step of 0.1% and analyzed their distributions. 

The lower and upper limits were set at 15% and 50%, 

respectively, based on the understanding that the 

standard deviation of estimated phenology metrics 

become stable for thresholds over 15% (Wang et al., 

2019), and the 50% threshold is commonly chosen 

value for phenology extraction due to its reliable 

performance in estimating vegetation growth states 

(Wang et al., 2020). Then, we conducted t-tests for 

the calculated groups to ascertain whether a 

statistically significant difference exists. ‘n.s.’ 

indicates no significant differences between the two 

slopes, while ‘*’ denotes significant differences 

between them (p-value < 0.05). Following the 

verification of statistical differences in phenology 

metrics between SFS and NFS, we analyzed the 

specific disparity between them by comparing the 

exact DOY calculated with a 50% threshold.

III. Result

3.1. Phenology metrics derived from NIRv and 

TCNIRv

We summarized the dates of SOS and EOS at GF 

and ONP at Table 1 and Table 2, respectively. We 

observed that both SOS and TCNIRv-derived EOS 

are relatively moved up compared to those derived 

from NIRv for both study areas. The EOS gap was 

notably different between these areas, i.e., the EOS 

gap at GF was -0.8 days while EOS gap at ONP 

was -2.5 days. This result implies that topographic 

effects significantly impact to EOS estimation.

3.2. Phenology metrics with respect to slope 

orientation

3.2.1. Phenology metrics uncertainties

Before examining the exact differences in 

phenology metrics between SFS and NFS, we 

demonstrated that there are significant differences in 

phenology metrics between them. We illustrated the 

phenology metrics calculated with NIRv/TCNIRv in 

GF and ONP at Fig. 6 and Fig. 7, respectively. At 

GF, NIRv-derived SOS exhibits no significant 

differences between SFS and NFS. Similarly, 

TCNIRv-derived SOS also shows no significant 

differences between SFS and NFS, or it is one day 

faster at SFS than NFS. We found the significant 

differences in estimate of EOS : NIRv-derived 

estimate of EOS was earlier at NFS than SFS, but 

TCNIRv-derived EOS was considerably delayed at 

NFS compared to SFS for both study sites.

3.2.2. Phenology metrics comparison

We examined the exact DOY for phenology 

metrics with a 50% threshold. The results for GF are 

presented in Table 3 and Table 4, and the results for 

ONP are presented in Table 5 and Table 6. 

Additionally, we calculated the gap between SFS and 

NFS by subtracting SFS metrics from NFS metrics. 

Both NIRv-derived and TCNIRv-derived SOS appear 

relatively stable compared to EOS for both areas. At 
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GF, the average NIRv-derived EOS at SFS is DOY 

270.3, and the NIRv-derived EOS at NFS is DOY 

265.5, resulting in an average gap of about -4.8 days. 

The average TCNIRv-derived EOS at SFS is DOY 

266.8, and the TCNIRv-derived EOS at NFS is DOY 

268.3, resulting in an average gap of about 1.5 days. 

At ONP, the average NIRv-derived EOS at SFS is 

265, and the NIRv-derived EOS at NFS is 261.8, 

resulting in an average gap of -3.3 days. The average 

TCNIRv-derived EOS at SFS is DOY 262, and the 

TCNIRv-derived EOS at NFS is DOY 264.8, 

resulting in an average gap of about 2.8 days. We 

observed that NIRv-derived EOS is earlier at NFS 

than SFS, whereas TCNIRv-derived EOS is earlier 

at SFS than NFS. Additionally, an absolute difference 

between SFS and NFS is larger for NIRv-derived 

EOS compared to TCNIRv-derived EOS.

ONP
SOS (DOY) EOS (DOY)

NIRv TCNIRv Gap NIRv TCNIRv Gap

2019 129.0 128.0 -1.0 270.0 266.0 -4.0

2020 141.0 140.0 -1.0 237.0 238.0 +1.0

2021 123.0 123.0 0.0 267.0 263.0 -4.0

2022 134.0 133.0 -1.0 270.0 267.0 -3.0

Average 131.8 131.0 -0.8 261.0 258.5 -2.5

Table 2. Phenology metrics derived from NIRv and TCNIRv at ONP. We observed that SOS and 

TCNIRv-derived EOS are both preceding to those derived from NIRv

Fig. 5. (a) and (b) are NIRv and TCNIRv time series smoothed by SG filter at GF and ONP, respectively.

GF
SOS (DOY) EOS (DOY)

NIRv TCNIRv Gap NIRv TCNIRv Gap

2019 119.0 118.0 -1.0 268.0 267.0 -1.0

2020 121.0 120.0 -1.0 274.0 272.0 -2.0

2021 106.0 106.0 0.0 267.0 268.0 +1.0

2022 115.0 115.0 0.0 271.0 270.0 -1.0

Average 115.3 114.8 -0.5 270.0 269.3 -0.8

Table 1. Phenology metrics derived from NIRv and TCNIRv at GF. We observed that SOS and TCNIRv-derived 

EOS are both preceding to those derived from NIRv
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Fig. 6. Boxplots representing the distributions of SOS and EOS for GF, obtained by varying thresholds

from 15% to 50% with a step of 0.1%. (a) and (b) present results derived from NIRv and TCNIRv,

respectively. NIRv-derived EOS occurs earlier at NFS than SFS, but TCNIRv-derived EOS occurs

later at NFS than SFS.
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Fig. 7. Boxplots representing the distributions of SOS and EOS for ONP, obtained by varying thresholds

from 15% to 50% with a step of 0.1%. (a) and (b) present results derived from NIRv and TCNIRv,

respectively. NIRv-derived EOS occurs earlier at NFS than SFS, but TCNIRv-derived EOS occurs

later at NFS than SFS.
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GF (NIRv)
SOS (DOY) EOS (DOY)

SFS NFS Gap SFS NFS Gap

2019 117.0 (± 12.1) 118.0 (± 7.5) +1.0 270.0 (± 21.8) 268.0 (± 18.3) -2.0

2020 122.0 (± 14.3) 122.0 (± 11.5) 0.0 270.0 (± 28.6) 265.0 (± 27.1) -5.0

2021 107.0 (± 12.5) 107.0 (± 12.7) 0.0 271.0 (± 20.1) 270.0 (± 20.5) -1.0

2022 116.0 (± 16.4) 116.0 (± 15.8) 0.0 270.0 (± 31.7) 259.0 (± 34.1) -11.0

Average 115.5 115.8 0.3 270.3 265.5 -4.8

Table 3. Phenology metrics derived from NIRv for GF, 2019-2022. The gap is calculated as the metrics of 

NFS – SFS. Note that EOS at NFS is averagely 4.8 days earlier than that at SFS

GF (TCNIRv)
SOS (DOY) EOS (DOY)

SFS NFS Gap SFS NFS Gap

2019 117.0 (± 10.3) 118.0 (± 9.4) +1.0 267.0 (± 19.2) 271.0 (± 19.7) +4.0

2020 121.0 (± 9.9) 122.0 (± 14.5) +1.0 266.0 (± 25.4) 268.0 (± 29.7) +2.0

2021 106.0 (± 10.4) 107.0 (± 14.7) +1.0 270.0 (± 16.9) 271.0 (± 22.6) +1.0

2022 115.0 (± 11.7) 116.0 (± 21.2) +1.0 264.0 (± 29.5) 263.0 (± 36.6) -1.0

Average 114.8 115.8 +1.0 266.8 268.3 +1.5

Table 4. Phenology metrics derived from TCNIRv for GF, 2019-2022. The gap is calculated as the metrics

of NFS – SFS. Note that EOS at NFS is averagely 1.5 days later than that at SFS

ONP (NIRv)
SOS (DOY) EOS (DOY)

SFS NFS Gap SFS NFS Gap

2019 130.0 (± 10.7) 129.0 (± 7.9) -1.0 271.0 (± 20.7) 265.0 (± 19.0) -6.0

2020 141.0 (± 14.1) 139.0 (±11.6) -2.0 244.0 (± 21.8) 245.0 (± 19.8) +1.0

2021 123.0 (± 12.9) 123.0 (± 11.7) 0.0 270.0 (± 18.2) 267.0 (± 19.2) -3.0

2022 134.0 (± 18.8) 133.0 (± 19.1) -1.0 275.0 (± 20.8) 270.0 (± 20.8) -5.0

Average 132.0 131.0 -1.0 265.0 261.8 -3.3

Table 5. Phenology metrics derived from NIRv for ONP, 2019-2022. The gap is calculated as the metrics

of NFS – SFS. Note that EOS at NFS is averagely 3.3 days earlier than that at SFS

ONP (TCNIRv)
SOS (DOY) EOS (DOY)

SFS NFS Gap SFS NFS Gap

2019 129.0 (± 9.6) 129.0 (± 9.6) 0.0 266.0 (± 18.8) 268.0 (± 20.1) +2.0

2020 140.0 (± 13.5) 139.0 (±14.4) -1.0 243.0 (± 19.5) 249.0 (± 22.2) +6.0

2021 123.0 (± 11.9) 123.0 (± 14.8) 0.0 267.0 (± 16.1) 269.0 (± 19.6) +2.0

2022 133.0 (± 16.2) 134.0 (± 19.9) +1.0 272.0 (± 19.4) 273.0 (± 21.0) +1.0

Average 131.3 131.3 0.0 262.0 264.8 +2.8

Table 6. Phenology metrics derived from TCNIRv for ONP, 2019-2022. The gap is calculated as the metrics 

of NFS – SFS. Note that EOS at NFS is averagely 2.8 days later than that at SFS
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IV. Discussion

In this study, we observed the differences in 

phenology metrics estimates using NIRv and 

TCNIRv. TCNIRv adopted a topographic correction 

conversion factor derived from the mathematical 

simplification of a canopy radiative transfer model, 

mitigating the effects of illumination conditions on 

NIRv. We observed that TCNIRv-derived EOS 

occurs earlier than NIRv-derived EOS, and the gap 

between them is larger in relatively rugged terrain 

(ONP) compared to relatively flat terrain (GF). These 

findings align with previous studies indicating that 

TCNIRv-derived EOS precedes NIRv-derived EOS 

(Chen et al., 2023b).

Then we compared the phenology metrics 

estimates, especially for EOS, with respect to slope 

orientation. Employing threshold methods for 

phenology metrics extraction, we considered 

uncertainties arising from arbitrary threshold settings 

by examining the distribution of phenology metrics 

derived from varying threshold, i.e. 15% to 50% with 

a 0.1% step. Then we examined exact DOY by setting 

threshold as 50%. While NIRv-derived EOS is 

significantly earlier at NFS compared to SFS (GF : 

DOY 270.3/265.5 for SFS/NFS; ONP : DOY 

265/261.8 for SFS/NFS), TCNIRv-derived EOS at 

NFS is significantly delayed compared to SFS (GF : 

DOY 266.8/268.3 for SFS/NFS; ONP : DOY 

262/264.8 for SFS/NFS). Additionally, we found that 

the gap (i.e., NFS-SFS) of TCNIRv-derived EOS 

between SFS and NFS (GF : +1.5 days; ONP : +2.8 

days) is smaller than gap of NIRv-derived EOS 

between them (GF : -4.8 days; ONP : -3.3 days). 

Our study has two main limitations. First, without 

data on other climate factor, we couldn’t pinpoint the 

exact cause of these results in the study. Previous 

studies examined that plants at NFS have longer 

growing season length than that at SFS under specific 

condition, but these studies typically focus on 

semi-arid climates (Guerrero et al., 2016; Wang et 

al., 2023). Plant growth in semi-arid regions is 

dominantly affected by soil moisture, and soils at 

NFS are known to contain more moisture than soils 

at SFS due to sunlight exposure affecting soil 

moisture levels (Guerrero et al., 2016). However, to 

the best of our knowledge, such phenomena have not 

been studied in South Korea, and we were unable 

to obtain climate data segregated based on slope 

orientation for analysis of the relationship between 

climate and phenology metrics. 

The other limitation of this research is the absence 

of data for validating results, such as gross primary 

production (GPP). While several LSP studies adopt 

GPP as an evaluation factor orientation (Caparros- 

Santiago et al., 2021), especially those derived from 

ground-level remote sensing products, our study sites 

were not equipped for these observations, making it 

challenging to obtain data considering slope 

orientation.

We suggest that future studies should aim to 

include validation data and analyze relationships with 

other climate factors. Also, to identify certain features 

of phenology estimation using TCNIRv with respect 

to topographic features, more samples with field 

observations are needed.

V. Conclusion

This is the first study to compare phenology 

metrics derived from TCNIRv between SFS and NFS. 

The implementation of topographic correction with 

TCNIRv revealed notable distinctions in the timing 

of EOS between NFS and SFS. Specifically, 

TCNIRv-derived EOS at NFS exhibited a 

significantly delay compared to SFS, while 

NIRv-derived EOS indicated an earlier occurrence at 

NFS. Additionally, the gap between SFS and NFS 

diminished after topographic correction. Our findings 

underscore the necessity of topographic correction in 

accurately estimating plant growth, particularly in 

diverse terrain conditions. This study paves the way 

for future investigations that integrate additional 

climate factors and employ a robust validation 

process, contributing to a comprehensive understanding 

of climate-carbon feedbacks in mountainous regions.
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적  요

개엽기, 낙엽기 추정은 식물 생태 주기를 이해하는 

데 매우 중요한 역할을 한다. 식물의 근적외선 반사

(NIRv)는 일차생산량(GPP)의 강력한 대리지표로 밝

혀져 식물계절학 연구에 활발하게 가용되는 추세이다. 

하지만 지형에 의한 반사도 왜곡 효과가 상쇄되지 않

아 산악 지역의 지형 왜곡 효과에 민감하며 낙엽기를 

추정하는 데 성능이 떨어진다. 지형 보정 NIRv 

(TCNIRv)는 지형 왜곡 효과와 관련된 한계점을 완화

하기 위해 경로 길이 보정 방법을 사용한다. TCNIRv

는 낙엽기에 대해 NIRv 보다 더 정확한 값을 추정할 

수 있다는 사실이 확인되었다. 지형 보정은 경사 및 

사면 방향 같은 지형 속성과 연관성이 크기 때문에, 

이번 연구에서는 광릉 수목원과 오대산 국립공원 같이 

비교적 상이한 지형 특성을 가진 두 산악 지역을 대상

으로 남사면과 북사면에서의 예측 결과를 비교하였다. 

결과적으로, 두 연구지에서 TCNIRv 를 이용해 예측

한 낙엽기는 북사면에서 남사면보다 지연되었고 (광릉 

수목원: SFS/NFS - DOY 266.8/268.3; 오대산 국립공

원: SFS/NFS - DOY 262/264.8), 이는 NIRv 의 결과

와는 반대되는 예측 결과였다 (광릉 수목원: SFS/NFS 

- DOY 270.3/265.5; 오대산 국립공원: SFS/NFS - 

DOY 265/261.8). 또한 지형 보정 이후 남사면와 북사

면 간의 낙엽기의 차이가 감소했다는 사실도 알 수 

있었다 (광릉 수목원: SFS/NFS - DOY 270.3/265.5; 

오대산 국립공원: SFS/NFS - DOY 265/261.8). 우리

는 사면방향에 따라 식물 생장기를 예측했을 때, 

TCNIRv 를 이용한 낙엽기 추정에서 NIRv 를 이용해 

예측한 결과와 차이점을 가진다고 결론 내렸다. 이로

써 다양한 지형 조건에서 사면 별 식물 생장기를 추정

하는 데 지형 보정이 필수적이라는 사실을 강조한다.
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List of Abbreviations

LSP : Land Surface Phenology

VI : Vegetation Index

NDVI : Normalized Difference Vegetation Index

NIR : Near-Infrared Reflectance
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