• Title/Summary/Keyword: NIH/3T3

Search Result 308, Processing Time 0.026 seconds

Improvement of biohistological response of facial implant materials by tantalum surface treatment

  • Bakri, Mohammed Mousa;Lee, Sung Ho;Lee, Jong Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.52.1-52.8
    • /
    • 2019
  • Background: A compact passive oxide layer can grow on tantalum (Ta). It has been reported that this oxide layer can facilitate bone ingrowth in vivo though the development of bone-like apatite, which promotes hard and soft tissue adhesion. Thus, Ta surface treatment on facial implant materials may improve the tissue response, which could result in less fibrotic encapsulation and make the implant more stable on the bone surface. The purposes of this study were to verify whether surface treatment of facial implant materials using Ta can improve the biohistobiological response and to determine the possibility of potential clinical applications. Methods: Two different and commonly used implant materials, silicone and expanded polytetrafluoroethylene (ePTFE), were treated via Ta ion implantation using a Ta sputtering gun. Ta-treated samples were compared with untreated samples using in vitro and in vivo evaluations. Osteoblast (MG-63) and fibroblast (NIH3T3) cell viability with the Ta-treated implant material was assessed, and the tissue response was observed by placing the implants over the rat calvarium (n = 48) for two different lengths of time. Foreign body and inflammatory reactions were observed, and soft tissue thickness between the calvarium and the implant as well as the bone response was measured. Results: The treatment of facial implant materials using Ta showed a tendency toward increased fibroblast and osteoblast viability, although this result was not statistically significant. During the in vivo study, both Ta-treated and untreated implants showed similar foreign body reactions. However, the Ta-treated implant materials (silicone and ePTFE) showed a tendency toward better histological features: lower soft tissue thickness between the implant and the underlying calvarium as well as an increase in new bone activity. Conclusion: Ta surface treatment using ion implantation on silicone and ePTFE facial implant materials showed the possibility of reducing soft tissue intervention between the calvarium and the implant to make the implant more stable on the bone surface. Although no statistically significant improvement was observed, Ta treatment revealed a tendency toward an improved biohistological response of silicone and ePTFE facial implants. Conclusively, tantalum treatment is beneficial and has the potential for clinical applications.

CONSTRUCTION OF HNGF-$\beta$ RECOMBINANT ADENOVIRUS & SCREENING OF ITS EXPRESSION AFTER TRANSFECTION INTO VARIOUS CELL LINES (말초신경재생을 위한 hNGF-$\beta$ recombinant Adenovirus의 제작 및 수종세포주에서 신경성장인자의 발현)

  • Gao, En-Feng;Chung, Hun-Jong;Ahn, Kang-Min;Kim, Yoon-Tae;Park, Hee-Jung;Sung, Mi-Ae;Kim, Nam-Yeol;Yoo, Sang-Bae;Myoung, Hoon;Hwang, Soon-Jung;Kim, Myung-Jin;Kim, Sung-Min;Jang, Jeong-Won;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.5
    • /
    • pp.446-456
    • /
    • 2005
  • Nerve growth factor(NGF) has a critical role in peripheral nerve regeneration. The aim of this study is to construct a well-functioning hNGF-$\beta$ recombinat adenovirus for the ultimate development of improved method to promote peripheral nerve regeneration with adenovirus mediated hNGF-$\beta$ gene transfection into Schwann cells. First PCR associated cloning of GFP-tagged hNGF-$\beta$ which was ligated into E1/E3 deleted adenoviral vector was performed and tranfected into E. coli to construct hNGF-$\beta$ recombinant adenovirus. After production of recombinat adenovirus in a large scale, its transfection efficiency, expression, and function were evaluated using cell lines or primarily cultured cells of HEK293 cells, Schwann cells, fibroblast(NIH3T3) and myocyte(CRH cells). GFP expression was observed in 90% of infected cells compared to uninfected cells. Total mRNA isolated from hNGF-$\beta$ recombinat adenoviru infected cells showed strong RT-PCR band, however, LacZ recombinant adenovirus infected or uninfected cells did not. NGF quantification by ELISA showed a maximal release of 18.865 +/- 0.31ng/mL at 4th day. PC-12 cells exposed to media with hNGF-$\beta$ recombinant adenovirus infected Schwann cell demonstrated higher levels of differentiation compared with controls. We generated hNGF-$\beta$ recombinant adenovirus and induced over expression of NGF successfully in nonneuronal and neuronal cells. Following these result, it is expected to develop an improved treatment strategy peripheral nerve regeneration using the hNGF-$\beta$ gene transfected cells.

Adipocyte Differentiation Inhibitor Isolated from the Barks of Phellodendron amurense (황백(Phellodendri Cortex)으로부터 분리한 지방세포 분화 저해물질)

  • Kim, Kyung-Hee;Ahn, Soon-Cheol;Lee, Myung-Sun;Kweon, Oh-Song;Oh, Won-Keun;Kim, Min-Soo;Sohn, Cheon-Bae;Ahn, Jong-Seog
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.503-509
    • /
    • 2003
  • For the development of the anti-obesity natural drug, the inhibitor of adipocyte differentiation was screened from Korean traditional medicinal plants. Phellodendri Cortex was selected as a candidate of adipocyte differentiation inhibitor. An inhibitory compound PC-4 was purified from the methanol (MeOH) extract of Phellodendri Cortex using silica gel and ODS RP-18 column chromatography and HPLC. PC-4 was obtained as yellow powder; UV ${\lambda}_{max}$ (MeOH): 230, 260, 340 and 430 nm. The chemical structure of PC-4 was determined as an isoquionoline alkaloid, berberine, on the basis of various NMR experiments including $^1H-\;and\;^{13}C-NMR$. The PC-4 inhibited the differentiation of preadipocyte NIH-3T3 L1 cells at a concentration of $1\;{\mu}g/mL$.

FORMATION OF BASEMENT MEMBRANE AND STRATIFICATION OF RABBIT ORAL KERATINOCYTES CULTURED ON HUMAN ACELLULAR DERMAL MATRIX (인간 무세포성 진피기질 위에 배양한 가토 구강각화상피세포의 중충화와 기저막 형성에 관한 연구)

  • Kim, Yong-Deok;Ahn, Kang-Min;Yum, Hak-Yeol;Chung, Hun-Jong;Kim, Soung-Min;Jang, Jeong-Won;Sung, Mi-Ae;Park, Hee-Jung;Hwang, Soon-Jung;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.6
    • /
    • pp.510-522
    • /
    • 2005
  • To assess the clinical applicability of bio-artificial mucosa which was made with autologous oral keratinocytes and human acellular dermal matrix, the formation of basement membrane and stratification of oral keratinocytes were evaluated. Six New Zealand white rabbits (around 2kg in weight) were anesthetized and its buccal mucosa was harvested (1.0 $\times$ 0.5cm size). Oral keratinicytes were extracted and cultured primarily with the feeder layer of pretreated NIH J2 3T3 fibroblast. These confluent cells were innoculated on the human acellular dermal matrix and cultured in multiple layer by air-rafting method. After 3, 5, 7, 10, 14 days of culture, each cultured bio-artificial mucosa was investigated the number of epthelial layer of by H&E stain and toluidine blue stain. The immuhohistochemical methods were used to evaluate the cell division capacity, the formation of basement membrane, and it's property of specific cells (PCNA, cytokeratin 14, laminin). Transmission electromicroscopy was used for the attachment between cells and matrix with the number of hemidesmosome. In result, the numbers of layer of stratified growth of oral keratinocyte cultured on the human acellular dermal matrix and the number of hemidesomal attachment between epithelial cells and human acellular dermal matrix were similar to the layers of normal oral mucosa after 10 days of culture. The cell division rate, basement membrane formation and proliferation rate increased as culture period increased. With these results, bio-artificial mucosa with autologous oral epithelial cells cultured on the acellular dermal matrix had clinically adaptable properties after 10 days' culture and this new bio-artificial mucosa model with relatively short culture time can be expected clinical applicability.

In vitro Cytotoxicity Evaluation of Polydimethylsiloxane as a Biosensor Coating Material (바이오센서 코팅용 Polydimethylsiloxane의 생체외 세포독성 평가)

  • Park, Subeom;Lee, Jonghwan;Na, Kyunga;Jung, Jaeyeon;Kim, Myungjin;Park, Sungjae;Hyun, Jinho
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • PDMS was selected for a coating material of implantable biosensors and the cytotoxicity of extracts released from a polymer was evaluated using ISO 10993-5, Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity. Organo-tin was used as a positive control and a medium without serum was used as a negative control. Materials extract were prepared by incubating specimens in RPMI medium without serum ($125{\mu}L/cm^2$) for 24 h, 1 week and 6 weeks at $38^{\circ}C$. The evaluation of cytotoxicity was performed by two different methods : 1) seeding cells with extracts at the beginning 2) incubating extracts with cell sheets already formed on the plate. Both cell morphology and MTT numerical data were shown for the confirmation of cytotoxicity and cell spreading on the surface of PDMS.

  • PDF

Application of Glucuronic Acid with New Cosmetic Active Ingredient (새로운 노화 방지 성분으로서 글루쿠로닉 애씨드의 기능과 화장품 응용)

  • Lee Geun-Soo;Kim Jin-Wha;Lee Chun-Il;Pyo Hyeong-Bae;Lee Kong-Joo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.471-477
    • /
    • 2004
  • Exposure to elevated temperatures, chemical (active oxigen), or physical stress (UV light) induces immediate physiological response, the expression of heat shock proteins in cells. Thus, cells with elevated Heat Shock Protein levels become more tolerant to stress conditions that are otherwise lethal. First, we studied on the new function of glucuronic acid (GA) as preventive material of skin aging. The application of the GA shows significant induction of Heat Shock Protein 70 kDa (HSP 70 kDa) in contrast to cells without it. GA at the concentration which can induce HSP 70 kDa, protects the cell death induced by second stress (heat shock and hydrogen peroxide) in NIH3T3 cells. Second, we studied on in vitro transdermal permeation characteristic of GA through the excised mouse skin. In this study, we compared the skin permeability of GA in water with O/W emulsion. As a result, skin permeation parameters of GA shows lag time 1.2 h, partition coefficient 0.114, permeation flult rate $0.83114 mg/cm^2/h.$ In case of lag time, O/W emulsion containing GA increase 2.48 h. Also, the total accumulation permeation content decreased in contrast to GA solution after 24 h. But it has long-term permeability of glucuronic acid. These results suggest that glucuronic acid could be a good cosmetic active ingredient.

Cellular Toxic Effects and Action Mechanisms Of 2,2', 4,6,6'-Pentachlorobiphenyl

  • Kim Sun-Hee;Shin Kum-Joo;Kim Dohan;Kim Yun-Hee;Ryu Sung Ho;Suh Pann-Ghill
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.1-20
    • /
    • 2004
  • Polychlorinated biphenyls (PCBs), one a group of persistent and widespread environmental pollutants, have been considered to be involved in immunotoxicity, carcinogenesis, and apoptosis. However, the toxic effects and physical properties of a PCB congener are dependent on the structure. In the present study, we investigate the toxic effects and action mechanisms of PCBs In cells. Among the various congeners tested, 2,2',4,6,6'-PeCB-pentachlorobiphenyl (PeCB), a highly ortho-substituted congener having negligible binding affinity for aryl hydrocarbon receptor (AhR), caused the most potent toxicity and specific effects in several cell types. 2,2',4,6,6'-PeCB induced apoptotic cell death of human monocytic cells, suggesting that PCB-induced apoptosis may be linked to immunotoxicity. In addition, 2,2',4,6,6'-PeCB induced mitotic arrest by interfering with mitotic spindle assembly in NIH3T3 fibroblasts, followed by genetic instability which triggers p53 activation. Which suggests that 2,2',4,6,6'-PeCB may be involved in cancer development by causing genetic instability through mitotic spindle damage. On the other hand, 2,2',4,6,6'-PeCB increased cyclooxygenase-2 (COX-2) involved in cell survival through ERK1/2 MAPK and p53 in Rat-1 fibroblasts and mouse embryonic fibroblasts, triggering compensatory mechanism for abating its toxicity. Taken together, these results demonstrate that PCB congeners of different structure have distinct mechanism of action and 2,2',4,6,6'-PeCB causes several toxicity as well as compensatory mechanism in cells.

  • PDF

Photoaging protective effects of BIOGF1K, a compound-K-rich fraction prepared from Panax ginseng

  • Hong, Yo Han;Kim, Donghyun;Nam, Gibaeg;Yoo, Sulgi;Han, Sang Yun;Jeong, Seong-Gu;Kim, Eunji;Jeong, Deok;Yoon, Keejung;Kim, Sunggyu;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Background: BIOGF1K, a compound-K-rich fraction, has been shown to display anti-inflammatory activity. Although Panax ginseng is widely used for the prevention of photoaging events induced by UVB irradiation, the effect of BIOGF1K on photoaging has not yet been examined. In this study, we investigated the effects of BIOGF1K on UVB-induced photoaging events. Methods: We analyzed the ability of BIOGF1K to prevent UVB-induced apoptosis, enhance matrix metalloproteinase (MMP) expression, upregulate anti-inflammatory activity, reduce sirtuin 1 expression, and melanin production using reverse transcription-polymerase chain reaction, melanin content assay, tyrosinase assay, and flow cytometry. We also evaluated the effects of BIOGF1K on the activator protein-1 signaling pathway, which plays an important role in photoaging, by immunoblot analysis and luciferase reporter gene assays. Results: Treatment of UVB-irradiated NIH3T3 fibroblasts with BIOGF1K prevented UVB-induced cell death, inhibited apoptosis, suppressed morphological changes, reduced melanin secretion, restored the levels of type I procollagen and sirtuin 1, and prevented mRNA upregulation of MMP-1, MMP-2, and cyclo-oxygenase-2; these effects all occurred in a dose-dependent manner. In addition, BIOGF1K markedly reduced activator-protein-1-mediated luciferase activity and decreased the activity of mitogen-activated protein kinases (extracellular response kinase, p38, and C-Jun N-terminal kinase). Conclusion: Our results strongly suggest that BIOGF1K has anti-photoaging activity and that BIOGF1K could be used in anti-aging cosmeceutical preparations.

Antitumor and Immuno-modulatory Effect Against Mouse Sarcoma 180 of Crude Polysaccharides Extracted from Fruiting Body of Armillaria tabescens (뽕나무버섯부치(Armillaris tabescens)의 자실체에서 추출한 조다당류의 생쥐 Sarcoma 180에 대한 항암 및 면역증강 효과)

  • Lee, Geon-Woo;Kim, Hye-Young;Lee, U-Youn;Lee, Tae-Soo
    • The Korean Journal of Mycology
    • /
    • v.35 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • Armillaria tabescens, one of edible and medicinal mushrooms belonging to Agaricales of Basidiomycota, has been known to have outstanding curative effects on chronic hepatitis and cholecystitis and inhibitory effects on the sarcoma 180 and Erhrlich carcinoma of mice. Neutral saline soluble (0.9% NaCl), hot water soluble and methanol soluble substances (hereinafter referred to Fr, NaCl, Fr. HW and Fr, MeOH, respectively) were extracted from fruiting body of the mushroom. In vitro cytotoxicity tests showed that crude polysaccharides were not cytotoxic against cancer cell lines such as NIH3T3 and Sarcoma 180 at the concentration of $2000\;{\mu}g/ml$. Intraperitoneal injection with crude polysaccharides exhibited life prolongation effect of $28.8{\sim}46.5%$ in mice inoculated with Sarcoma 180, respectively. Fr. NaCl improved the immunopotentiation activity of B lymphocyte by increasing the alkaline phosphatase activity by $1.8{\sim}2.1$ folds, respectively. In case of Fr, NaCl, the numbers of peritoneal exudate cells and circulating leukocytes were increased by 9 and 1.9 folds, respectively.

Characterization of TNNC1 as a Novel Tumor Suppressor of Lung Adenocarcinoma

  • Kim, Suyeon;Kim, Jaewon;Jung, Yeonjoo;Jun, Yukyung;Jung, Yeonhwa;Lee, Hee-Young;Keum, Juhee;Park, Byung Jo;Lee, Jinseon;Kim, Jhingook;Lee, Sanghyuk;Kim, Jaesang
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.619-631
    • /
    • 2020
  • In this study, we describe a novel function of TNNC1 (Troponin C1, Slow Skeletal and Cardiac Type), a component of actin-bound troponin, as a tumor suppressor of lung adenocarcinoma (LUAD). First, the expression of TNNC1 was strongly down-regulated in cancer tissues compared to matched normal lung tissues, and down-regulation of TNNC1 was shown to be strongly correlated with increased mortality among LUAD patients. Interestingly, TNNC1 expression was enhanced by suppression of KRAS, and ectopic expression of TNNC1 in turn inhibited KRASG12D-mediated anchorage independent growth of NIH3T3 cells. Consistently, activation of KRAS pathway in LUAD patients was shown to be strongly correlated with down-regulation of TNNC1. In addition, ectopic expression of TNNC1 inhibited colony formation of multiple LUAD cell lines and induced DNA damage, cell cycle arrest and ultimately apoptosis. We further examined potential correlations between expression levels of TNNC1 and various clinical parameters and found that low-level expression is significantly associated with invasiveness of the tumor. Indeed, RNA interference-mediated down-regulation of TNNC1 led to significant enhancement of invasiveness in vitro. Collectively, our data indicate that TNNC1 has a novel function as a tumor suppressor and is targeted for down-regulation by KRAS pathway during the carcinogenesis of LUAD.