Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0075

Characterization of TNNC1 as a Novel Tumor Suppressor of Lung Adenocarcinoma  

Kim, Suyeon (Department of Life Science, Ewha Womans University)
Kim, Jaewon (Department of Life Science, Ewha Womans University)
Jung, Yeonjoo (Department of Life Science, Ewha Womans University)
Jun, Yukyung (Department of Life Science, Ewha Womans University)
Jung, Yeonhwa (Ewha Research Center for Systems Biology, Ewha Womans University)
Lee, Hee-Young (Ewha Research Center for Systems Biology, Ewha Womans University)
Keum, Juhee (Ewha Research Center for Systems Biology, Ewha Womans University)
Park, Byung Jo (Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Lee, Jinseon (Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Kim, Jhingook (Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Lee, Sanghyuk (Department of Life Science, Ewha Womans University)
Kim, Jaesang (Department of Life Science, Ewha Womans University)
Abstract
In this study, we describe a novel function of TNNC1 (Troponin C1, Slow Skeletal and Cardiac Type), a component of actin-bound troponin, as a tumor suppressor of lung adenocarcinoma (LUAD). First, the expression of TNNC1 was strongly down-regulated in cancer tissues compared to matched normal lung tissues, and down-regulation of TNNC1 was shown to be strongly correlated with increased mortality among LUAD patients. Interestingly, TNNC1 expression was enhanced by suppression of KRAS, and ectopic expression of TNNC1 in turn inhibited KRASG12D-mediated anchorage independent growth of NIH3T3 cells. Consistently, activation of KRAS pathway in LUAD patients was shown to be strongly correlated with down-regulation of TNNC1. In addition, ectopic expression of TNNC1 inhibited colony formation of multiple LUAD cell lines and induced DNA damage, cell cycle arrest and ultimately apoptosis. We further examined potential correlations between expression levels of TNNC1 and various clinical parameters and found that low-level expression is significantly associated with invasiveness of the tumor. Indeed, RNA interference-mediated down-regulation of TNNC1 led to significant enhancement of invasiveness in vitro. Collectively, our data indicate that TNNC1 has a novel function as a tumor suppressor and is targeted for down-regulation by KRAS pathway during the carcinogenesis of LUAD.
Keywords
invasion; KRAS; lung adenocarcinoma; TNNC1; tumor suppressor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abbas, T. and Dutta, A. (2009). p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 9, 400-414.   DOI
2 Berezowsky, C. and Bag, J. (1992). Slow troponin C is present in both muscle and nonmuscle cells. Biochem. Cell Biol. 70, 691-697.   DOI
3 Brainard, J. and Farver, C. (2019). The diagnosis of non-small cell lung cancer in the molecular era. Mod. Pathol. 32(Suppl 1), 16-26.   DOI
4 Brewer, L.A. (1977). Patterns of survival in lung cancer. Chest 71, 644-650.   DOI
5 Casas-Tinto, S., Maraver, A., Serrano, M., and Ferrus, A. (2016). Troponin-I enhances and is required for oncogenic overgrowth. Oncotarget 7, 52631-52642.   DOI
6 Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404.   DOI
7 Chase, P.B., Szczypinski, M.P., and Soto, E.P. (2013). Nuclear tropomyosin and troponin in striated muscle: new roles in a new locale? J. Muscle. Res. Cell Motil. 34, 275-284.   DOI
8 Chen, C., Liu, J.B., Bian, Z.P., Xu, J.D., Wu, H.F., Gu, C.R., Shi, Y., Zhang, J.N., Chen, X.J., and Yang, D. (2014). Cardiac troponin I is abnormally expressed in non-small cell lung cancer tissues and human cancer cells. Int. J. Clin. Exp. Pathol. 7, 1314-1324.
9 Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1.
10 Geissmann, Q. (2013). OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PLoS One 8, e54072.   DOI
11 Hanzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7.   DOI
12 Hata, T., Yamamoto, H., Ngan, C.Y., Koi, M., Takagi, A., Damdinsuren, B., Yasui, M., Fujie, Y., Matsuzaki, T., Hemmi, H., et al. (2005). Role of p21waf1/cip1 in effects of oxaliplatin in colorectal cancer cells. Mol. Cancer Ther. 4, 1585-1594.   DOI
13 Johnston, J.R., Chase, P.B., and Pinto, J.R. (2018). Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Oncotarget 9, 1461-1482.   DOI
14 Jung, Y., Jun, Y., Lee, H.Y., Kim, S., Keum, J., Lee, Y.S., Cho, Y.B., Lee, S., and Kim, J. (2015a). Characterization of SLC22A18 as a tumor suppressor and novel biomarker in colorectal cancer. Oncotarget 6, 25368-25380.   DOI
15 Jung, Y., Yong, S., Kim, P., Lee, H.Y., Keum, J., Lee, S., and Kim, J. (2015b). VAMP2-NRG1 fusion gene is a novel oncogenic driver of non-small-cell lung adenocarcinoma. J. Thorac. Oncol. 10, 1107-1111.   DOI
16 Kim, J., Lo, L., Dormand, E., and Anderson, D.J. (2003). SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17-31.   DOI
17 Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P., and Mesirov, J.P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739-1740.   DOI
18 Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29.   DOI
19 Leung, C.S., Yeung, T.L., Yip, K.P., Pradeep, S., Balasubramanian, L., Liu, J., Wong, K.K., Mangala, L.S., Armaiz-Pena, G.N., Lopez-Berestein, G., et al. (2014). Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat. Commun. 5, 5092.   DOI
20 Li, B. and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.   DOI
21 Ma, Y., Silveri, L., LaCava, J., and Dokudovskaya, S. (2017). Tumor suppressor NPRL2 induces ROS production and DNA damage response. Sci. Rep. 7, 15311.   DOI
22 Moses, M.A., Wiederschain, D., Wu, I., Fernandez, C.A., Ghazizadeh, V., Lane, W.S., Flynn, E., Sytkowski, A., Tao, T., and Langer, R. (1999). Troponin I is present in human cartilage and inhibits angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 96, 2645-2650.   DOI
23 Normand, G., Hemmati, P.G., Verdoodt, B., von Haefen, C., Wendt, J., Guner, D., May, E., Dorken, B., and Daniel, P.T. (2005). p14ARF induces G2 cell cycle arrest in p53- and p21-deficient cells by down-regulating p34cdc2 kinase activity. J. Biol. Chem. 280, 7118-7130.   DOI
24 Pao, W. and Girard, N. (2011). New driver mutations in non-small-cell lung cancer. Lancet Oncol. 12, 175-180.   DOI
25 Shimizu, K., Yoshida, J., Nagai, K., Nishimura, M., Ishii, G., Morishita, Y., and Nishiwaki, Y. (2005). Visceral pleural invasion is an invasive and aggressive indicator of non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 130, 160-165.   DOI
26 Sahota, V.K., Grau, B.F., Mansilla, A., and Ferrus, A. (2009). Troponin I and Tropomyosin regulate chromosomal stability and cell polarity. J. Cell Sci. 122(Pt 15), 2623-2631.   DOI
27 Schmidt, K., Hoffend, J., Altmann, A., Kiessling, F., Strauss, L., Koczan, D., Mier, W., Eisenhut, M., Kinscherf, R., and Haberkorn, U. (2006). Troponin I overexpression inhibits tumor growth, perfusion, and vascularization of morris hepatoma. J. Nucl. Med. 47, 1506-1514.
28 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675.   DOI
29 Siegel, R.L., Miller, K.D., and Jemal, A. (2018). Cancer statistics, 2018. CA Cancer J. Clin. 68, 7-30.   DOI
30 Wang, K., Singh, D., Zeng, Z., Coleman, S.J., Huang, Y., Savich, G.L., He, X., Mieczkowski, P., Grimm, S.A., Perou, C.M., et al. (2010). MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic. Acids. Res. 38, e178.   DOI
31 Yu, N., Yong, S., Kim, H.K., Choi, Y.L., Jung, Y., Kim, D., Seo, J., Lee, Y.E., Baek, D., Lee, J., et al. (2019). Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor-normal samples in lung adenocarcinoma. Mol. Oncol. 13, 1356-1368.   DOI
32 Cancer Genome Atlas Research Network (2014). Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543-550.   DOI