• 제목/요약/키워드: N-transform

검색결과 718건 처리시간 0.024초

코로나 방전 시스템을 이용한 연소가스중의 NOx, $SO_2$제거 (Removal of NOx and $SO_2$ from Combustion Flue Gases by Corona Discharge Systems)

  • 박재윤
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권8호
    • /
    • pp.830-835
    • /
    • 1997
  • In this study an experimental investigation has been conducted to remove NOx and SO$_2$simultaneously from a combustion flue gases were consisted of NO-SO$_2$-$CO_2$-$N_2$-O$_2$([NO]o:200ppm and [SO$_2$]o:800ppm) and the injection gases used as radical source gases were NH$_3$-Ar-air and CH$_4$-Ar-air. NOx and SO$_2$removal efficiency and the other by-products were measured by Fourier Transform Infrared(FTIR) as well as SO$_2$, NOx and NO$_2$gas detectors. and SEM images after sampling. The results showed that a significant Nucleating Particle Counter(CNPC) and SEM images after sampling. The results showed that a significant aerosol particle formation was observed during a simultaneous NOx and SO$_2$removal operation in corona radical shower systems. The diameter of aerosol particles was in the range of 0.18 to 3.6${\mu}{\textrm}{m}$ with a maximum fraction of particles at particles diameter of 1${\mu}{\textrm}{m}$. The NOx removal efficiency significantly increased with increasing applied voltage and NH$_3$molecule ratio. The SO$_2$removal efficiency was not significantly effected by applied voltage and slightly increased with increasing NH$_3$molecule ratio. It could be found that it is possible to use CH$_4$for NOx and SO$_2$removal by corona radical shower systems.

  • PDF

Improvement of the Biocompatibility of Chitosan Dermal Scaffold by Rigorous Dry Heat Treatment

  • Kim, Chun-Ho;Park, Hyun-Sook;Gin, Yong-Jae;Son, Young-Sook;Lim, Sae-Hwan;Park, Young-Ju;Park, Ki-Sook;Park, Chan-Woong
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.367-373
    • /
    • 2004
  • We have developed a rigorous heat treatment method to improve the biocompatibility of chitosan as a tissue-engineered scaffold. The chitosan scaffold was prepared by the controlled freezing and lyophilizing method using dilute acetic acid and then it was heat-treated at 110$^{\circ}C$ in vacuo for 1-3 days. To explore changes in the physicochemical properties of the heat-treated scaffold, we analyzed the degree of deacetylation by colloid titration with poly(vinyl potassium sulfate) and the structural changes were analyzed by scanning electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffractometry (WAXD), and lysozyme susceptibility. The degree of deacetylation of chitosan scaffolds decreased significantly from 85 to 30% as the heat treatment time increased. FT-IR spectroscopic and WAXD data indicated the formation of amide bonds between the amino groups of chitosan and acetic acids carbonyl group, and of interchain hydrogen bonding between the carbonyl groups in the C-6 residues of chitosan and the N-acetyl groups. Our rigorous heat treatment method causes the scaffold to become more susceptible to lysozyme treatment. We performed further examinations of the changes in the biocompatibility of the chitosan scaffold after rigorous heat treatment by measuring the initial cell binding capacity and cell growth rate. Human dermal fibroblasts (HDFs) adhere and spread more effectively to the heat-treated chitosan than to the untreated sample. When the cell growth of the HDFs on the film or the scaffold was analyzed by an MTT assay, we found that rigorous heat treatment stimulated cell growth by 1.5∼1.95-fold relative to that of the untreated chitosan. We conclude that the rigorous dry heat treatment process increases the biocompatibility of the chitosan scaffold by decreasing the degree of deacetylation and by increasing cell attachment and growth.

벤토나이트에 의한 혼합 중금속($Zn^{2+}$, $Ni^{2+}$, $Cd^{2+}$, $Cu^{2+}$$Pb^{2+}$) 수용액상에서의 중금속 흡착 특성 (Adsorption characteristics of synthetic heavy metals ($Zn^{2+}$, $Ni^{2+}$, $Cd^{2+}$, $Cu^{2+}$, and $Pb^{2+}$) by bentonite)

  • 신우석;김영기
    • 유기물자원화
    • /
    • 제22권2호
    • /
    • pp.17-26
    • /
    • 2014
  • 본 연구에서는 벤토나이트를 이용하여 수용액상에서 혼합 중금속의 흡착 특성을 평가하였다. 벤토나이트는 SEM과 FT-IR에 의해 물리 화학적 성상을 분석하였고, 중금속 흡착 특성은 Freundlich 및 Langmuir 방정식을 이용하여 해석하였다. 평형흡착 실험결과는 Langmuir 모델에 잘 부합되었으며, $Pb^{2+}$ > $Cu^{2+}$ > $Cd^{2+}$ > $$Zn^{2+}{\sim_=}Ni^{2+}$$순으로 평형 흡착량이 높았다. 용액의 pH가 6에서 10으로 증가함에 따라 흡착량은 증가하는 경향을 나타내었다. SEM과 FT-IR에 의한 벤토나이트의 표면 관찰결과에서 주 관능기는 Si-O 및 Si-O-Al 로 나타났다. 이러한 결과로부터 중금속 흡착 메카니즘은 표면흡착과 이온교환뿐만 아니라 표면 침전이다. 본 연구 결과를 통해 벤토나이트는 수용액 내 중금속을 효율적으로 제거할 수 있는 흡착제로 판단된다.

Economics During Global Recession: Sharia-Economics as a Post COVID-19 Agenda

  • ARFAH, Aryati;OLILINGO, Fahruddin Zain;SYAIFUDDIN, S.;DAHLIAH, D.;NURMIATI, N.;PUTRA, Aditya Halim Perdana Kusuma
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.1077-1085
    • /
    • 2020
  • This research is a literacy study regarding the implementation and management of the economic role of haria as a new strategy in overcoming the problem of the global financial crisis that has hit the middle of the COVID-19 pandemic. The research method comes from previous studies to compare the capitalist, socialist, and sharia economic systems. In response to various economic uncertainties, both internal and external, the ability to seize opportunities and transform has become the key to economic resilience. Islamic economics can be an alternative in responding to the dynamics of the global and national economy. Several things need to be taken into consideration in fulfilling the sharia economy and the primary strategy chosen must come from the inputs given by the stakeholders, including business actors, associations, regulators as well as experts, and academicians. The primary strategy in implementing the sharia economy also requires the support of various parties in order to develop sustainability. Strengthening regulation and governance is one of the fundamental factors. Optimization of the sharia economy based social sector such as Zakat, Infaq, Sadaqah, and Waqaf can be optimized both for collection and distribution so that the concept of sharing can certainly support the development and the economy both nationally and globally.

Analysis of Heavy Metal Toxic Ions by Adsorption onto Amino-functionalized Ordered Mesoporous Silica

  • Showkat, Ali Md;Zhang, Yu-Ping;Kim, Min-Seok;Gopalan, Anantha Iyengar;Reddy, Kakarla Raghava;Lee, Kwang-Pill
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.1985-1992
    • /
    • 2007
  • Ordered mesoporous silica (MCM-41) materials with different textural properties were prepared using alkyl (dodecyl, cetyl, eicosane) trimethyl ammonium bromide (DTAB, CTAB, ETAB, respectively) as structure directing surfactants, functionalized with amine groups and used as adsorbent for the toxic metal ions, Cr (VI), As (V), Pb (II) and Hg (II). Amino functionalization of mesoporous MCM-41 was achieved by cocondensation of N-[3-(trimethoxysilyl)-propyl] aniline with tetraethyl orthosilicate. Adsorption isotherm and adsorption capacity of the amine functionalized materials for Cr (VI), As (V), Pb (II) and Hg (II) ions were followed by inductively coupled plasma mass spectrometry (ICP-MS). Results demonstrate that amine functionalized MCM-41 prepared with ETAB showed higher adsorption capacity for Cr (VI), As (V), Pb (II) and Hg (II) ions in comparison to MCM-41 prepared with CTAB and DTAB. The higher adsorption capacity for MCM-41(ETAB) was correlated with amine content in the material (determined by CHN analysis) and relative decrease in pore volume and pore diameter. X-ray diffraction (XRD) analysis, nitrogen adsorptiondesorption measurements and Fourier Transform infrared spectrometry (FTIR) were used to follow the changes in the textural parameters and surface properties of the mesoporous materials as a result of amine functionalization to correlate with the adsorption characteristics. The adsorption process was found to depend on the pH of the medium.

Gamma irradiation-induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto ePTFE for implant applications

  • Mohd Hidzir, Norsyahidah;Radzali, Nur Ain Mohd;Rahman, Irman Abdul;Shamsudin, Siti Aisyah
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2320-2327
    • /
    • 2020
  • The extreme hydrophobicity of expanded polytetrafluoroethylene (ePTFE) hinders bone-tissue integration, thus limiting the use of ePTFE in medical implant applications. To improve the potential of ePTFE as a biomaterial, 2-hydroxyethyl methacrylate (HEMA) was grafted onto the ePTFE surface using the gamma irradiation technique. The characteristics of the grafted ePTFE were successfully evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR), field-emission scanning electron microscopy (FESEM)/energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). Under the tensile test, the modified ePTFE was found to be more brittle and rigid than the untreated sample. In addition, the grafted ePTFE was less hydrophobic with a higher percentage of water uptake compared to the untreated ePTFE. The protein adsorption test showed that grafted ePTFE could adsorb protein, which was denoted by the presence of N peaks in the XPS analysis. Moreover, the formation of the globular mineral on the grafted ePTFE surface was successfully visualized using the FESEM analysis, with a ratio of 1.94 for Ca:P minerals by the EDX. To summarize, the capability of the modified ePTFE to show protein adsorption and mineralization indicates the improvement of the polymer properties, and it can potentially be used as a biomaterial for implant application.

합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거 (Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe))

  • 이준엽;최정학
    • 한국환경과학회지
    • /
    • 제27권7호
    • /
    • pp.611-620
    • /
    • 2018
  • In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.

Cu2+ ion reduction in wastewater over RDF-derived char

  • Lee, Hyung Won;Park, Rae-su;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Kim, Sang Chai;Chung, Jin Do;Choi, Won Geun;Park, Young-Kwon
    • Carbon letters
    • /
    • 제18권
    • /
    • pp.49-55
    • /
    • 2016
  • Refuse-derived fuel (RDF) produced using municipal solid waste was pyrolyzed to produce RDF char. For the first time, the RDF char was used to remove aqueous copper, a representative heavy metal water pollutant. Activation of the RDF char using steam and KOH treatments was performed to change the specific surface area, pore volume, and the metal cation quantity of the char. N2 sorption, Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and Fourier transform infrared spectroscopy were used to characterize the char. The optimum pH for copper removal was shown to be 5.5, and the steam-treated char displayed the best copper removal capability. Ion exchange between copper ions and alkali/alkaline metal cations was the most important mechanism of copper removal by RDF char, followed by adsorption on functional groups existing on the char surface. The copper adsorption behavior was represented well by a pseudo-second-order kinetics model and the Langmuir isotherm. The maximum copper removal capacity was determined to be 38.17 mg/g, which is larger than those of other low-cost char adsorbents reported previously.

클라우드 기반의 공공 서비스 유형 분류 모델 (Classification Model for Cloud-based Public Service)

  • 나종회;이지연;신선영;김정엽;최영진
    • 정보화연구
    • /
    • 제10권4호
    • /
    • pp.509-516
    • /
    • 2013
  • 클라우드 서비스는 낮은 비용과 높은 효율성으로 빠르게 변화하는 스마트사회에서 필수적인 IT인프라로 인식되고 있다. 구글, 아마존 등 해외 유수 기업에서 시작된 클라우드 서비스는 미국과 영국등 외국 정부의 클라우드 서비스 도입 정책에 다양한 영향을 끼쳤다. 특히, 이들 국가들은 정보자원의 효율적 관리를 위해서 클라우드 컴퓨팅의 도입과 아울러 기존 공공서비스의 클라우드 서비스로의 전환을 가속화하고 있다. 본 연구에서는 공공부문에서의 클라우드 서비스 도입을 위한 외국 정부의 다양한 사례 분석을 토대로 공공부문에서의 클라우드 도입시 주요 결정요인을 제시하고 공공부문에서 클라우드 도입 및 활용을 위한 클라우드 서비스 큐브 모델을 제안하였다.

시부트라민 고체 분산체의 특성화 및 조절된 방출거동 (Characterization and Controlled Release of Solid Dispersed Sibutramine)

  • 박정수;구정;이준희;김윤태;박종학;안식일;모종현;이해방;강길선
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권2호
    • /
    • pp.119-126
    • /
    • 2008
  • Solid dispersions of poorly water-soluble drug, sibutramine, were prepared with hydrophilic polymer, poly-N-vinylpyrrolidone (PVP), hydroxypropylmethylcellulose (HPMC) and organic acid, citric acid, to improve the solubility of drug. Physicochemical variation and shape of microsphere were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and Fourier-transform infrared spectroscopy (FT-IR). Microspheres containing additives showed more spherical shape than non additive microspheres. In vitro release behavior of microspheres presented at simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8). The solid dispersion form transformed the drug into an amorphous state and dramatically improved its dissolution rate. These data suggest that the solid dispersion technique is an effective approach for developing the appetite depressant drug products and various pharmaceutical excipients are able to control the release behaviors.