DOI QR코드

DOI QR Code

Analysis of Heavy Metal Toxic Ions by Adsorption onto Amino-functionalized Ordered Mesoporous Silica

  • Showkat, Ali Md (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Zhang, Yu-Ping (Henan Institute of Science and Technology) ;
  • Kim, Min-Seok (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Gopalan, Anantha Iyengar (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Reddy, Kakarla Raghava (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Lee, Kwang-Pill (Department of Chemistry Graduate School, Kyungpook National University)
  • Published : 2007.11.20

Abstract

Ordered mesoporous silica (MCM-41) materials with different textural properties were prepared using alkyl (dodecyl, cetyl, eicosane) trimethyl ammonium bromide (DTAB, CTAB, ETAB, respectively) as structure directing surfactants, functionalized with amine groups and used as adsorbent for the toxic metal ions, Cr (VI), As (V), Pb (II) and Hg (II). Amino functionalization of mesoporous MCM-41 was achieved by cocondensation of N-[3-(trimethoxysilyl)-propyl] aniline with tetraethyl orthosilicate. Adsorption isotherm and adsorption capacity of the amine functionalized materials for Cr (VI), As (V), Pb (II) and Hg (II) ions were followed by inductively coupled plasma mass spectrometry (ICP-MS). Results demonstrate that amine functionalized MCM-41 prepared with ETAB showed higher adsorption capacity for Cr (VI), As (V), Pb (II) and Hg (II) ions in comparison to MCM-41 prepared with CTAB and DTAB. The higher adsorption capacity for MCM-41(ETAB) was correlated with amine content in the material (determined by CHN analysis) and relative decrease in pore volume and pore diameter. X-ray diffraction (XRD) analysis, nitrogen adsorptiondesorption measurements and Fourier Transform infrared spectrometry (FTIR) were used to follow the changes in the textural parameters and surface properties of the mesoporous materials as a result of amine functionalization to correlate with the adsorption characteristics. The adsorption process was found to depend on the pH of the medium.

Keywords

References

  1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710 https://doi.org/10.1038/359710a0
  2. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834
  3. Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mater. 1996, 8, 1682 https://doi.org/10.1021/cm960138+
  4. Sayari, A.; Liu, P. Micropor. Mesopor. Mater. 1997, 12, 149 https://doi.org/10.1016/S0927-6513(97)00059-X
  5. Ciesla, U.; Schuth, F. Micropor. Mesopor. Mater. 1999, 27, 131 https://doi.org/10.1016/S1387-1811(98)00249-2
  6. Selvam, P.; Bhatia, S. K.; Sonwane, C. G. Ind. Eng. Chem. Res. 2001, 40, 3237 https://doi.org/10.1021/ie0010666
  7. Bae, J. Y.; Choi, S.-H.; Bae, B.-S. Bull. Kor. Chem. Soc. 2006, 27(10), 1562 https://doi.org/10.5012/bkcs.2006.27.10.1562
  8. Cho, S.-Y.; Kim, N.-R.; Cao, G.; Kim, J.-G.; Chung, C.-M. Bull. Kor. Chem. Soc. 2006, 27(3), 403 https://doi.org/10.5012/bkcs.2006.27.3.399
  9. Barton, T. J.; Bull, L. M.; Klemperer, W. G.; Loy, D. A.; McEnaney, B.; Misono, M.; Monson, P. A.; Scherer, G. W.; Vartuli, J. C.; Yaghi, O. M. Chem. Mater. 1999, 11, 2633 https://doi.org/10.1021/cm9805929
  10. Huo, Q.; Margolese, D.; Stucky, G. D. Chem. Mater. 1996, 8, 1147 https://doi.org/10.1021/cm960137h
  11. Kruk, M.; Jaroniec, M.; Sakamoto, Y.; Terasaki, O.; Ryoo, R.; Ko, C. H. J. Phys. Chem. B 2000, 104, 292 https://doi.org/10.1021/jp992718a
  12. Lee, K.-P.; Showkat, A. M.; Gopalan, A.; Kim, S.-H.; Choi, S.-H. Macromolecules 2005, 38, 364 https://doi.org/10.1021/ma048703e
  13. Showkat, A. M.; Lee, K.-P.; Gopalan, A.; Kim, S.-H.; Choi, S.-H. Polymer 2005, 46, 1804 https://doi.org/10.1016/j.polymer.2005.01.003
  14. Moller, K.; Bein, T. Chem. Mater. 1998, 10, 2950 https://doi.org/10.1021/cm980243e
  15. Brunel, D. Micropor. Mesopor. Mater. 1999, 27, 329 https://doi.org/10.1016/S1387-1811(98)00266-2
  16. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Science 1997, 276, 923
  17. Liu, J.; Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Gong, M. Adv. Mater. 1998, 10, 161
  18. Kawi, S. Chem. Commun. 1998, 13, 1407
  19. Shen, S. C.; Kawi, S. J. Phys. Chem. B 1999, 103, 8870 https://doi.org/10.1021/jp991831y
  20. Liu, A. M.; Hidajat, K.; Kawi, S.; Zhao, D. Y. Chem. Commun. 2000, 13, 1145
  21. Brunel, D. Micropor. Mesopor. Mater. 1999, 27, 329 https://doi.org/10.1016/S1387-1811(98)00266-2
  22. Ehlers, L. J.; Pfeffe, M. J.; Melia, C. R. O. Environ. Sci. Technol. 2001, 34, 464 https://doi.org/10.1021/es003466q
  23. Chen, S.-L.; Dzeng, S. R.; Yang, M.-H.; Chlu, K.-H.; Shleh, G. M.; Wal, C. M. Environ. Sci. Technol. 1994, 28, 877
  24. Nickson, R.; McArthur, J.; Burgess, W.; Ahmed, K. M.; Ravenscroft, P.; Rahman, M. Nature 1998, 395, 338 https://doi.org/10.1038/26387
  25. Wittbrodt, P. R.; Palmer, C. D. Environ. Sci. Technol. 1995, 29, 255 https://doi.org/10.1021/es00001a033
  26. Sterrns, D. M.; Kennedy, L. J.; Courtney, K. D.; Giangrande, P. H.; Phieffer, L. S.; Wetterhahn, K. E. Biochemistry 1995, 34, 910 https://doi.org/10.1021/bi00003a025
  27. Heary, L.; Ray, D. Environ. Sci. Technol. 1987, 21, 1187 https://doi.org/10.1021/es00165a005
  28. Baes, C. F.; Mesmer, Jr, R. E. The Hydrolysis of Cations; John Wiley and Sons: New York, U.S.A., 1976
  29. Roundhill, D. M.; Koch, H. F. Chem. Soc. Rev. 2002, 31, 60 https://doi.org/10.1039/b003141k
  30. Harper, T. R.; Kingham, N. W. Water Environ. Res. 1992, 64, 200 https://doi.org/10.2175/WER.64.3.2
  31. Fox, K. R.; Sorg, T. J. J. Am. Water Works Assoc. 1987, 79, 81
  32. De Carlo, E. H.; Thomas, D. M. Environ. Sci. Technol. 1985, 19, 538
  33. Min, J.; Eun, S. W.; Jae, K. P.; Sang, C. Environ. Sci. Technol. 2003, 37, 5062 https://doi.org/10.1021/es0343712
  34. Toshiyuki, Y.; Takashi, T.; Hideaki, Y. J. Colloid Interface Sci. 2004, 274, 451 https://doi.org/10.1016/j.jcis.2004.02.037
  35. Faust, S. D.; Ali, O. M. Chemistry of Water Treatment; Butterworth: Boston, U.S.A., 1983
  36. Mohan, D.; Guputa, V. K.; Srivastava, S. K.; Chander, S. Colloids Surf. A 2001, 177, 169 https://doi.org/10.1016/S0927-7757(00)00669-5
  37. Navarro, R. R.; Sumi, K.; Matumura, M. Water Res. 1999, 33, 2037 https://doi.org/10.1016/S0043-1354(98)00421-7
  38. Huang, C. P.; Hao, O. J. J. Environ. Technol. Lett. 1989, 10, 863 https://doi.org/10.1080/09593338909384808
  39. Zamzow, M. J.; Eichbaum, B. R.; Sandgren, K. R.; Shanks, D. E. Separ. Sci. Technol. 1990, 25, 1555 https://doi.org/10.1080/01496399008050409
  40. Mercier, L.; Pinnavaia, T. J. Micropor. Mesopor. Mater. 1998, 20, 101 https://doi.org/10.1016/S1387-1811(97)00019-X
  41. Celis, R.; Hermosin, M. C.; Cornejo, J. Environ. Sci. Technol. 2000, 34, 4593 https://doi.org/10.1021/es000013c
  42. Feng, X.; Fryxell, E.; Wang, L.-Q.; Kim, Y.; Liu, J.; Kemner, K. M. Science 1997, 276, 923
  43. Mercier, L.; Pinnavaia, T. J. Environ. Sci. Technol. 1998, 32, 2749 https://doi.org/10.1021/es970622t
  44. Liu, A. M.; Hidajat, K.; Kawi, S.; Zhao, D. Y. Chem. Commun. 2000, 1145
  45. Zhang, L. Z.; Cheng, P.; Liao, D.-Z. J. Chem. Phys. 2002, 117, 5959
  46. Wei, Z.; Zhang, Z.; Wan, M. Langmuir 2002, 18, 917 https://doi.org/10.1021/la0155799
  47. Ryoo, R.; Kim, J. K. J. Chem. Soc. Chem. Commun. 1995, 711
  48. Ryoo, R.; Jun, S. J. Phys. Chem. B 1997, 101, 317 https://doi.org/10.1021/jp962500d
  49. Ryoo, R.; Ko, C. H.; Park, I. S. Chem. Commun. 1999, 1413
  50. Mercier, L.; Pinnavaia, T. J. Environ. Sci. Technol. 1998, 32, 2749 https://doi.org/10.1021/es970622t
  51. Zhao, X. S.; Lu, G. Q. J. Phys. Chem. B 1998, 102, 1556 https://doi.org/10.1021/jp972788m
  52. Autochshuk, V.; Jaroniec, M. Chem. Mater. 2000, 12, 2496 https://doi.org/10.1021/cm000268p
  53. Zhao, X. S.; Lu, G. Q.; Whittaker, A. J.; Millar, G. J.; Zhu, H. Y. J. Phys. Chem. B 1997, 101, 6525 https://doi.org/10.1021/jp971366+
  54. Diaz, J. F.; Balkus, K. J.; Bedioui, F.; Kurshev, V.; Kevan, L. Chem. Mater. 1997, 9, 61 https://doi.org/10.1021/cm960228e
  55. Hongshao, Z.; Stanforth, R. Environ. Sci. Technol. 2001, 35, 4753 https://doi.org/10.1021/es010890y
  56. Water. Polu. Conf. Fed. 1978, 50, 993
  57. Fryxell, G. E.; Liu, J.; Hauser, T. A.; Nie, Z.; Ferris, K. F.; Mattigod, S.; Gong, M.; Hallen, R. T. Chem. Mater. 1999, 11, 2148 https://doi.org/10.1021/cm990104c
  58. Yoshitake, H.; Yokoi, T.; Tatsumi, T. Chem. Mater. 2002, 14, 4603 https://doi.org/10.1021/cm0202355

Cited by

  1. -MCM-41 and Its Application for Epoxidation of Styrene vol.51, pp.5, 2012, https://doi.org/10.1021/ie200109h
  2. Application of Crosslinked Ionic Poly(Vinyl Alcohol) Nanogel as Adsorbents for Water Treatment vol.34, pp.10, 2013, https://doi.org/10.1080/01932691.2012.742791
  3. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review vol.7, pp.2, 2014, https://doi.org/10.3390/ma7020673
  4. Synthesis and characterization of nano-modified permeability membrane vol.26, pp.11, 2015, https://doi.org/10.1002/pat.3649
  5. Size dependence of adsorption kinetics of nano-MgO: a theoretical and experimental study vol.18, pp.1, 2016, https://doi.org/10.1007/s11051-016-3324-2
  6. Role of hexamine: growth of multiarmed ZnO nanorods and evidence of merging due to lateral growth vol.27, pp.11, 2016, https://doi.org/10.1007/s10854-016-5375-7
  7. Synthesis and characterization of pH-sensitive superabsorbent hydrogels based on sodium alginate-g-poly(acrylic acid-co-acrylamide) obtained via an anionic surfactant micelle templating under microwave irradiation vol.73, pp.11, 2016, https://doi.org/10.1007/s00289-016-1649-8
  8. Evaluation of Humic Acid and Tannic Acid Fouling in Graphene Oxide-Coated Ultrafiltration Membranes vol.8, pp.34, 2016, https://doi.org/10.1021/acsami.6b08020
  9. Purification of Nanoparticles by Liquid Chromatography for Biomedical and Engineering Applications vol.08, pp.10, 2017, https://doi.org/10.4236/ajac.2017.810044
  10. junction with enhanced photocatalytic activity vol.100, pp.4, 2017, https://doi.org/10.1111/jace.14667
  11. Preparation of a hydroxyethyl-titanium dioxide-carboxymethyl cellulose hydrogel cage and its effect on the removal of methylene blue vol.134, pp.23, 2017, https://doi.org/10.1002/app.44925
  12. Photoluminescent properties of spider silk coated with Eu-doped nanoceria vol.19, pp.2, 2017, https://doi.org/10.1007/s11051-017-3750-9
  13. Effect of microwave sintering on the crystal domain and electrical properties of TiO2 nanoparticles vol.19, pp.6, 2017, https://doi.org/10.1007/s11051-017-3896-5
  14. Efficient Red Downshifting in Layered Structure: A Broad Spectral Converter for Enhancing Photo-response of Solar Cell vol.27, pp.S1, 2017, https://doi.org/10.1007/s10904-017-0684-8
  15. Study of InSb thin films grown on different substrates by the pulsed electrodeposition technique vol.28, pp.18, 2017, https://doi.org/10.1007/s10854-017-7216-8
  16. sensing characteristics of Pd/ZnO nanoparticles based Schottky diode at room temperature vol.4, pp.12, 2017, https://doi.org/10.1088/2053-1591/aa9cb4
  17. ) ion-imprinted polymers with bi-component polymer brushes vol.7, pp.42, 2017, https://doi.org/10.1039/C7RA03536E
  18. Polyacrylamide-grafted legume starch for wastewater treatment: synthesis and performance comparison vol.74, pp.11, 2017, https://doi.org/10.1007/s00289-017-1959-5
  19. Synthesis and swelling behavior of metal-chelating superabsorbent hydrogels based on sodium alginate-g-poly(AMPS-co-AA-co-AM) obtained under microwave irradiation vol.74, pp.11, 2017, https://doi.org/10.1007/s00289-017-1967-5
  20. Morphology and interaction of nanocomposite foams formed with organo-palygorskite and ethylene-vinyl acetate copolymers vol.74, pp.2, 2017, https://doi.org/10.1007/s00289-016-1721-4
  21. Polymer-supported catalyst for effective degradation of organic dyes: 100% recovery of catalyst stability and reusability pp.1436-2449, 2017, https://doi.org/10.1007/s00289-017-2132-x
  22. Immobilization of horseradish peroxidase on electrospun poly(vinyl alcohol)–polyacrylamide blend nanofiber membrane and its use in the conversion of phenol pp.1436-2449, 2017, https://doi.org/10.1007/s00289-017-2129-5
  23. Fabrication of stable dye-sensitized solar cell with hydrothermally synthesized titanium dioxide nanorods as a photoanode material pp.1573-482X, 2018, https://doi.org/10.1007/s10854-017-8307-2
  24. Optically important ZnS semiconductor nanoparticles synthesized using organic waste banana peel extract and their characterization pp.1573-482X, 2018, https://doi.org/10.1007/s10854-017-8097-6
  25. Synthesis of ZnO nanorods by one step microwave-assisted hydrothermal route for electronic device applications pp.1573-482X, 2017, https://doi.org/10.1007/s10854-017-8223-5
  26. Structure, electrical and magnetic properties of La0.67Ca0.33−x K x MnO3 polycrystalline ceramic pp.1573-482X, 2018, https://doi.org/10.1007/s10854-017-8089-6
  27. Optical and electrical performance of transparent conductive TiO2/Cu/TiO2 multilayers prepared by magnetron sputtering pp.1573-482X, 2017, https://doi.org/10.1007/s10854-017-8210-x
  28. The effect of ambient temperature on the optical properties and crystalline quality of ZnSe and ZnSe:Cu NCs grown by rapid microwave irradiation pp.1573-482X, 2018, https://doi.org/10.1007/s10854-017-8276-5
  29. Experimental and Computational Studies on Catalytic Activity of Novel Adenine-Based Nano Cu(I) Polymers in Regioselective Synthesis of 1,4-Disubstituted 1,2,3-Triazoles pp.1574-1451, 2017, https://doi.org/10.1007/s10904-017-0727-1
  30. Efficient Storage of Gentamicin in Nanoscale Zeolitic Imidazolate Framework-8 Nanocarrier for pH-Responsive Drug Release pp.1574-1451, 2017, https://doi.org/10.1007/s10904-017-0745-z
  31. Design and Fabrication of a Novel Metal-Free SiO2/g-C3N4 Nanocomposite: A Robust Photocatalyst for the Degradation of Organic Contaminants pp.1574-1451, 2017, https://doi.org/10.1007/s10904-017-0715-5
  32. Synthesis of Nanostructured Based WO3 Materials for Photocatalytic Applications pp.1574-1451, 2017, https://doi.org/10.1007/s10904-017-0714-6
  33. Magnetic Zinc Ferrite–Chitosan Bio-Composite: Synthesis, Characterization and Adsorption Behavior Studies for Cationic Dyes in Single and Binary Systems pp.1574-1451, 2017, https://doi.org/10.1007/s10904-017-0752-0
  34. Broadband Enhancement of PbS Quantum Dot Solar Cells by the Synergistic Effect of Plasmonic Gold Nanobipyramids and Nanospheres pp.16146832, 2017, https://doi.org/10.1002/aenm.201701194
  35. -decorated PANI particles vol.3, pp.8, 2016, https://doi.org/10.1088/2053-1591/3/8/085301
  36. Green synthesis, growth and catalytic activity of silver nanoparticles vol.5, pp.4, 2017, https://doi.org/10.1680/jgrma.17.00022
  37. heterostructure with enhanced photocatalytic activity for NO gas removal under visible light irradiation vol.50, pp.14, 2017, https://doi.org/10.1088/1361-6463/aa60e3
  38. Tuning of the electronic structure and magnetic properties of xenon ion implanted zinc oxide vol.51, pp.9, 2018, https://doi.org/10.1088/1361-6463/aaa832
  39. Benign and ecofriendly depolymerization of polycarbonate wastes into valuable diols using micro- and nano-TiO2 as the solid supports vol.27, pp.4, 2018, https://doi.org/10.1007/s13726-018-0607-8
  40. Investigation on optical, thermal, dielectric and mechanical properties of antimony potassium tartrate on l-alanine single crystals vol.29, pp.7, 2018, https://doi.org/10.1007/s10854-018-8519-0
  41. Comparison of Vickers microhardness of undoped and Ru doped BSCCO glass ceramic materials vol.29, pp.5, 2018, https://doi.org/10.1007/s10854-017-8336-x
  42. Synthesis of Dandelion—like CuO microspheres for photocatalytic degradation of reactive black-5 vol.5, pp.1, 2018, https://doi.org/10.1088/2053-1591/aaa660
  43. Surface property modification of well-dispersed amphiphilic gold nanoparticles as individuals vol.20, pp.9, 2018, https://doi.org/10.1007/s11051-018-4349-5
  44. Tailoring of Functionally Graded Mullite: La2O3 Coatings by Transferred Arc Plasma for Thermal Barrier Coatings vol.28, pp.6, 2018, https://doi.org/10.1007/s10904-018-0920-x
  45. Preparation of Mesoporous SBA-15 Supported CdS Quantum Dots and Its Application for Photocatalytic Degradation of Organic Pollutants in Aqueous Media vol.28, pp.6, 2018, https://doi.org/10.1007/s10904-018-0918-4
  46. Effect of strong static magnetic field on the microstructure and transformation temperature of Co–Ni–Al ferromagnetic shape memory alloy vol.29, pp.22, 2018, https://doi.org/10.1007/s10854-018-0079-9
  47. Evolution vol.10, pp.17, 2018, https://doi.org/10.1002/cctc.201800814
  48. Intense infrared, visible up and down emissions in Er3+/Yb3+ co-doped SrAl12O19 obtained by urea assisted combustion route vol.29, pp.19, 2018, https://doi.org/10.1007/s10854-018-9745-1
  49. vol.10, pp.9, 2018, https://doi.org/10.1002/cctc.201701730
  50. Confeito-like Au/TiO2 nanocomposite: synthesis and plasmon-induced photocatalysis vol.20, pp.7, 2018, https://doi.org/10.1007/s11051-018-4276-5
  51. DFT Application on the Interaction Properties of Ethanol Vapors with MnFe2O4 Nanostructures vol.28, pp.5, 2018, https://doi.org/10.1007/s10904-018-0824-9
  52. Organic-inorganic hybrids: an efficient extractant of environmental mercury ions vol.5, pp.7, 2018, https://doi.org/10.1088/2053-1591/aace0b
  53. Agglomeration behavior of lipid-capped gold nanoparticles vol.20, pp.4, 2018, https://doi.org/10.1007/s11051-018-4215-5
  54. Theoretical and experimental approaches to measuring mechanical properties of Zn1−xCoxO binary tetrahedral bulk semiconductors vol.29, pp.10, 2018, https://doi.org/10.1007/s10854-018-8800-2
  55. Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants vol.20, pp.22, 2010, https://doi.org/10.1039/b924316j
  56. Removal of RhB From Aqueous Solutions by Two Polyoxometalates Adsorbents pp.1574-1451, 2019, https://doi.org/10.1007/s10904-018-1045-y
  57. Adsorption of Cu2+ on spherical Fe-MCM-41 and its application for oxidation of adamantane vol.179, pp.1, 2010, https://doi.org/10.1016/j.jhazmat.2010.03.051
  58. Removal of Cu(II) ions from aqueous streams using poly(acrylic acid-co-acrylamide) hydrogels vol.349, pp.2, 2007, https://doi.org/10.1016/j.jcis.2010.05.048
  59. Adsorption of lead (II) on SBA-15 mesoporous molecular sieve functionalized with -NH2 groups vol.160, pp.None, 2012, https://doi.org/10.1016/j.micromeso.2012.05.004
  60. Recent Advances in Silica-Based Materials for the Removal of Hexavalent Chromium: A Review vol.60, pp.9, 2007, https://doi.org/10.1021/acs.jced.5b00292
  61. Induced Hydrophilicity of the Nanoclay on the Pervaporation Performance of Cross-Linked Poly(vinyl alcohol) Nanocomposite Membranes vol.55, pp.12, 2007, https://doi.org/10.1080/03602559.2015.1132454
  62. Fe-modified sporopollenin as a composite biosorbent for the removal of Pb2+from aqueous solutions vol.57, pp.58, 2007, https://doi.org/10.1080/19443994.2016.1182449
  63. Effective removal of divalent metal ions: synthesis and characterization of pH-sensitive guar gum based hydrogels vol.57, pp.9, 2007, https://doi.org/10.1080/19443994.2014.991757
  64. Functionalized porous Si nanowires for selective and simultaneous electrochemical detection of Cd(II) and Pb(II) ions vol.211, pp.None, 2007, https://doi.org/10.1016/j.electacta.2016.06.141
  65. Morphology-Induced TiO2 Bandgap Change for Super Rapid Treatment of Dye Wastewater under Visible Light vol.2, pp.12, 2007, https://doi.org/10.1002/admt.201700125
  66. Effect of EVA on thermal stability, flammability, mechanical properties of HDPE/EVA/Mg(OH)2 composites vol.213, pp.None, 2007, https://doi.org/10.1088/1757-899x/213/1/012002
  67. Enhanced photocatalytic performance of vertically grown ZnO nanorods decorated with metals (Al, Ag, Au, and Au-Pd) for degradation of industrial dye vol.4, pp.5, 2017, https://doi.org/10.1088/2053-1591/aa6d31
  68. Highly surface-roughened quasi-spherical silver powders in back electrode paste for silicon solar cells vol.4, pp.8, 2007, https://doi.org/10.1088/2053-1591/aa827d
  69. Localized surface plasmon-enhanced emission from red phosphor with Au-SiO2 nanoparticles vol.205, pp.None, 2007, https://doi.org/10.1016/j.matlet.2017.06.082
  70. Fabrication of a magnetic nanocomposite photocatalysts Fe3O4@ZIF-67 for degradation of dyes in water under visible light irradiation vol.255, pp.None, 2007, https://doi.org/10.1016/j.jssc.2017.08.012
  71. Facile synthesis of graphitic C3N4 nanoporous-tube with high enhancement of visible-light photocatalytic activity vol.28, pp.49, 2007, https://doi.org/10.1088/1361-6528/aa929a
  72. Photocatalytic and ferromagnetic properties of electrically conducting multifunctional Ni/NiO nanocomposites in amorphous carbon matrix vol.228, pp.None, 2018, https://doi.org/10.1016/j.mseb.2017.11.017
  73. Effects of ammonium tungstate on the properties of insulating coating for grain-oriented silicon steel vol.228, pp.None, 2007, https://doi.org/10.1016/j.mseb.2017.11.022
  74. Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2 vol.29, pp.15, 2007, https://doi.org/10.1088/1361-6528/aaad44
  75. Surface- and interface-engineered heterostructures for solar hydrogen generation vol.51, pp.16, 2007, https://doi.org/10.1088/1361-6463/aab318
  76. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation vol.29, pp.17, 2007, https://doi.org/10.1088/1361-6528/aaaf12
  77. Ni(II)/Zn(II)-triazolate clusters based MOFs constructed from a V-shaped dicarboxylate ligand: Magnetic properties and phosphate sensing vol.262, pp.None, 2007, https://doi.org/10.1016/j.jssc.2018.03.015
  78. In-situ confined formation of NiFe layered double hydroxide quantum dots in expanded graphite for active electrocatalytic oxygen evolution vol.262, pp.None, 2007, https://doi.org/10.1016/j.jssc.2018.03.017
  79. Hydrogen bond-induced bright enhancement of fluorescent silica cross-linked micellar nanoparticles vol.519, pp.None, 2007, https://doi.org/10.1016/j.jcis.2018.02.064
  80. Ag(I)‐Catalyzed Chlorination of Linezolid during Water Treatment: Kinetics and Mechanism vol.50, pp.7, 2018, https://doi.org/10.1002/kin.21175
  81. Ag-doped Co3O4 catalyst derived from heterometallic MOF for syngas production by electrocatalytic reduction of CO2 in water vol.263, pp.None, 2007, https://doi.org/10.1016/j.jssc.2018.04.007
  82. Vertically aligned Cu-ZnO nanorod arrays for water splitting applications vol.222, pp.None, 2007, https://doi.org/10.1016/j.matlet.2018.03.187
  83. Synthesis of Ag/NiO Honeycomb Structured Nanoarrays as the Electrode Material for High Performance Asymmetric Supercapacitor Devices vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-41446-0
  84. Removal of Arsenate and Chromate by Lanthanum-modified Granular Ceramic Material: The Critical Role of Coating Temperature vol.9, pp.None, 2007, https://doi.org/10.1038/s41598-019-44165-8
  85. X-Ray Absorption Spectroscopy Analysis of Lead Species Adsorbed on Various Oxides from High pH Solution vol.11, pp.10, 2007, https://doi.org/10.4236/jep.2020.1110050
  86. A selective and easily recyclable dimer based on a calix[4]pyrrole derivative for the removal of mercury(ii) from water vol.10, pp.6, 2020, https://doi.org/10.1039/c9ra09911e
  87. Optimal Synthesis and Evaluation of Tri-Amine Modified Ordered Mesoporous Carbon (TriFeOMC) and Its Application for the Adsorption of Arsenic and Lead From Aqueous Solution vol.7, pp.None, 2007, https://doi.org/10.3389/fmats.2020.00112
  88. Development of an Adsorbing System Made of DMS-1 Mesh Modified by Amino Groups to Remove Pb(II) Ions from Water vol.13, pp.8, 2007, https://doi.org/10.3390/ma13081914
  89. Solid-state ion recognition strategy using 2D hexagonal mesophase silica monolithic platform: a smart two-in-one approach for rapid and selective sensing of Cd2+ and Hg2+ ions vol.187, pp.7, 2007, https://doi.org/10.1007/s00604-020-04363-y
  90. Present status of hybrid materials for potable water decontamination: a review vol.6, pp.12, 2007, https://doi.org/10.1039/d0ew00619j
  91. Comparison of Structure and Adsorption Properties of Mesoporous Silica Functionalized with Aminopropyl Groups by the Co-Condensation and the Post Grafting Methods vol.14, pp.3, 2007, https://doi.org/10.3390/ma14030628