Browse > Article
http://dx.doi.org/10.1016/j.net.2020.03.016

Gamma irradiation-induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto ePTFE for implant applications  

Mohd Hidzir, Norsyahidah (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Radzali, Nur Ain Mohd (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Rahman, Irman Abdul (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Shamsudin, Siti Aisyah (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Publication Information
Nuclear Engineering and Technology / v.52, no.10, 2020 , pp. 2320-2327 More about this Journal
Abstract
The extreme hydrophobicity of expanded polytetrafluoroethylene (ePTFE) hinders bone-tissue integration, thus limiting the use of ePTFE in medical implant applications. To improve the potential of ePTFE as a biomaterial, 2-hydroxyethyl methacrylate (HEMA) was grafted onto the ePTFE surface using the gamma irradiation technique. The characteristics of the grafted ePTFE were successfully evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR), field-emission scanning electron microscopy (FESEM)/energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). Under the tensile test, the modified ePTFE was found to be more brittle and rigid than the untreated sample. In addition, the grafted ePTFE was less hydrophobic with a higher percentage of water uptake compared to the untreated ePTFE. The protein adsorption test showed that grafted ePTFE could adsorb protein, which was denoted by the presence of N peaks in the XPS analysis. Moreover, the formation of the globular mineral on the grafted ePTFE surface was successfully visualized using the FESEM analysis, with a ratio of 1.94 for Ca:P minerals by the EDX. To summarize, the capability of the modified ePTFE to show protein adsorption and mineralization indicates the improvement of the polymer properties, and it can potentially be used as a biomaterial for implant application.
Keywords
ePTFE; Gamma irradiation; Grafting; Biomaterial;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Fayolle, L. Audouin, J. Verdu, Radiation induced embrittlement of PTFE, Polymer 44 (2003) 2773-2780.   DOI
2 P. Ducheyne, Comprehensive Biomaterials: Metallic, Ceramics and Polymeric Biomaterials, Elsevier, United Kingdom, 2011.
3 B.D. Ratner, D.G. Castner, Surface Modification of Polymeric Materials, Springer, New York, 1997.
4 S. Ebnesajjad, Expanded PTFE Applications Handbook : Technology, Manufacturing and Applications, Elsevier, United Kingdom, 2017.
5 A.F.V. Recum, T.G.V. Kooten, The influence of microtopography on cellular response and the implications for silicone implants, J. Biomater. Sci. Polym. Ed. 7 (1995) 181-198.   DOI
6 N.M. Hidzir, D.J.T. Hill, E. Taran, D. Martin, L. Grondah, Argon plasma treatment-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes, Polymer 54 (2013) 6536-6546.   DOI
7 I. Noh, in: U.S.P.A. Publication (Ed.), Method for Chemical Surface Modification of Polytetrafluoroethylene Materials, 2005.
8 N.M. Hidzir, Q. Lee, D.J.T. Hill, F. Rasoul, L. Grondahl, Grafting of acrylic acid-coitaconic acid onto ePTFE and characterization of water uptake by the graft copolymers, J. Appl. Polym. Sci. 132 (2015) 41482.
9 Z. Ismail, N.M. Hidzir, N.A.M. Radzali, I.A. Rahman, Gamma radiation-induced grafting of acetic acid onto expanded poly (tetrafluroethylene) membranes for biomaterial application, Malaysia J. Anal. Sci. 21 (2017) 527-534.
10 N.M. Hidzir, D.J.T. Hill, D. Martin, L. Grondahl, Radiation-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes, Polymer 53 (2012) 6063-6071.   DOI
11 E. Wentrup-Byrne, L. Grondahl, S. Suzuki, Methacryloxyethyl phosphategrafted expanded polytetrafluoroethylene membranes for biomedical applications, Polym. Int. 54 (2005) 1581-1588.   DOI
12 J.-P. Montheard, M. Chatzopoulos, D. Chappard, 2-Hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields, J. Macromol. Sci. Polym. Rev. 32 (1992) 1-34.   DOI
13 E.M. Abdel-Bary, A.M. Dessouki, E.M. El Nesr, A.A. El Miligy, Radiation-induced grafting of binary monomer (acrylic acid/2-hydroxyethyl methacrylate) onto LDPE and PP films, Polym. Plast. Technol. Eng. 34 (2006) 383-403.   DOI
14 J.M. Seidel, S.M. Malmonge, Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques, Mater. Res. 3 (2000) 79-83.   DOI
15 A.I. Cassady, N.M. Hidzir, L. Grondahl, Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications, J. Appl. Polym. Sci. 131 (2014) 1-14.
16 S.L. Tomic, M.M. Micic, S.N. Dobic, J.M. Filipovic, E.H. Suljovrujic, Smart poly(2- hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application, Radiat. Phys. Chem. 79 (2010) 643-649.   DOI
17 B.D. Gupta, P.K. Tyagi, A.R. Ray, H. Singh, Radiation-induced grafting of 2- hydroxyethyl methacrylate onto polypropylene for biomedical applications. I. Effect of synthesis conditions, J. Macromol. Sci. Part A - Chem. 27 (1990) 831-841.   DOI
18 M.H. Casimiro, M.L. Botelho, J.P. Leal, M.H. Gil, Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan, Radiat. Phys. Chem. 72 (2005) 731-735.   DOI
19 X. Chen, A. Nouri, Y. Li, J. Lin, P.D. Hodgson, C. Wen, Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid, Biotechnol. Bioeng. 101 (2008) 378-387.   DOI
20 M. Bohner, J. Lemaitre, Can bioactivity be tested in vitro with SBF solution? Biomaterials 30 (2009) 2175-2179.   DOI
21 S. Suzuki, L. Grondahl, D. Leavesley, E. Wentrup-Byrne, In vitro bioactivity of MOEP grafted ePTFE membranes for craniofacial applications, Biomaterials 26 (2005) 5303-5312.   DOI
22 M.M. Nasef, Effect of solvents on radiation-induced grafting of styrene onto fluorinated polymer films, Polym. Int. 50 (2001) 338-346.   DOI
23 T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907-2915.   DOI
24 E.J. Castillo, J.L. Koenig, J.M. Anderson, J. Lo, Protein adsorption on hydrogels, Biomaterials 6 (1985) 338-345.   DOI
25 D.B.G. Beamson, High Resolution XPS of Organic Polymers : the Scienta ESCA300 Database, John Wiley and Sons, New York, 1992.
26 A. Chandler-Temple, P. Kingshott, E. Wentrup-Byrne, A.I. Cassady, L. Grondahl, Surface chemistry of grafted expanded poly(tetrafluoroethylene) membranes modifies the in vitro proinflammatory response in macrophages, J. Biomed. Mater. Res. 101 (2013) 1047-1058.
27 J.K. Shim, H.S. Na, Y.M. Lee, H. Huh, Y.C. Nho, Surface modification of polypropylene membranes by gamma ray induced graft copolymerization and their solute permeation characteristics, J. Membr. Sci. 190 (2001) 215-226.   DOI
28 A.F. Chandler-Temple, E. Wentrup-Byrne, H.J. Griesser, M. Jasieniak, A.K. Whittaker, L. Grondahl, Comprehensive characterization of grafted expanded poly(tetrafluoroethylene) for medical applications, Langmuir 26 (2010) 15409-15417.   DOI
29 T.R. Dargaville, G.A. George, D.J.T. Hill, A.K. Whittaker, High energy radiation grafting of fluoropolymers, Prog. Mater. Sci. 28 (2003) 1355-1376.
30 V. Haddadi-asl, R.P. Burford, J.L. Garnett, Radiation graft modification of ethylene-propylene rubber-i.Effect of monomer and substrate structure, Radiat. Phys. Chem. 44 (1994) 385-393.   DOI
31 H.M. Nizam El-Din, A.W.M. El-Naggar, Synthesis and characterization of hydroxyethyl methacrylate/acrylamide responsive hydrogels, J. Appl. Polym. Sci. 95 (2005) 1105-1115.   DOI
32 C.A. Scotchford, B. Sim, S. Downes, Water uptake and protein release characteristics of a new methacrylate-based polymer system, Polymer 38 (1997) 3869-3874.   DOI
33 J. Coates, Interpretation of infrared spectra, A practical approach, Encycl. Anal. Chem. (2000) 10815-10837.
34 S. Edge, S. Walker, W.J. Feast, A.W.F. Pacynko, Surface modification of polyethylene by photochemical grafting with 2-hydroxyethylmethacrylate, J. Appl. Polym. Sci. 47 (1993) 1075-1082.   DOI
35 N.M. Hidzir, D.J.T. Hill, D. Martin, L. Grondahl, In vitro mineralisation of grafted ePTFE membranes carrying carboxylate groups, Bioact. Mater. 2 (2017) 27-34.   DOI
36 E.T. Kang, Y. Zhang, Surface modification of fluoropolymers via molecular design, Adv. Mater. 12 (2000) 1481-1494.   DOI
37 S. Raynaud, E. Champion, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering, Biomaterials 23 (2002) 1073-1080.   DOI