References
- B. Fayolle, L. Audouin, J. Verdu, Radiation induced embrittlement of PTFE, Polymer 44 (2003) 2773-2780. https://doi.org/10.1016/S0032-3861(03)00116-2
- P. Ducheyne, Comprehensive Biomaterials: Metallic, Ceramics and Polymeric Biomaterials, Elsevier, United Kingdom, 2011.
- B.D. Ratner, D.G. Castner, Surface Modification of Polymeric Materials, Springer, New York, 1997.
- S. Ebnesajjad, Expanded PTFE Applications Handbook : Technology, Manufacturing and Applications, Elsevier, United Kingdom, 2017.
- A.I. Cassady, N.M. Hidzir, L. Grondahl, Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications, J. Appl. Polym. Sci. 131 (2014) 1-14.
- A.F.V. Recum, T.G.V. Kooten, The influence of microtopography on cellular response and the implications for silicone implants, J. Biomater. Sci. Polym. Ed. 7 (1995) 181-198. https://doi.org/10.1163/156856295X00698
- N.M. Hidzir, D.J.T. Hill, E. Taran, D. Martin, L. Grondah, Argon plasma treatment-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes, Polymer 54 (2013) 6536-6546. https://doi.org/10.1016/j.polymer.2013.10.003
- I. Noh, in: U.S.P.A. Publication (Ed.), Method for Chemical Surface Modification of Polytetrafluoroethylene Materials, 2005.
- N.M. Hidzir, Q. Lee, D.J.T. Hill, F. Rasoul, L. Grondahl, Grafting of acrylic acid-coitaconic acid onto ePTFE and characterization of water uptake by the graft copolymers, J. Appl. Polym. Sci. 132 (2015) 41482.
- Z. Ismail, N.M. Hidzir, N.A.M. Radzali, I.A. Rahman, Gamma radiation-induced grafting of acetic acid onto expanded poly (tetrafluroethylene) membranes for biomaterial application, Malaysia J. Anal. Sci. 21 (2017) 527-534.
- N.M. Hidzir, D.J.T. Hill, D. Martin, L. Grondahl, Radiation-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes, Polymer 53 (2012) 6063-6071. https://doi.org/10.1016/j.polymer.2012.10.042
- E. Wentrup-Byrne, L. Grondahl, S. Suzuki, Methacryloxyethyl phosphategrafted expanded polytetrafluoroethylene membranes for biomedical applications, Polym. Int. 54 (2005) 1581-1588. https://doi.org/10.1002/pi.1902
- J.-P. Montheard, M. Chatzopoulos, D. Chappard, 2-Hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields, J. Macromol. Sci. Polym. Rev. 32 (1992) 1-34. https://doi.org/10.1080/15321799208018377
- J.M. Seidel, S.M. Malmonge, Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques, Mater. Res. 3 (2000) 79-83. https://doi.org/10.1590/S1516-14392000000300006
- S.L. Tomic, M.M. Micic, S.N. Dobic, J.M. Filipovic, E.H. Suljovrujic, Smart poly(2- hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application, Radiat. Phys. Chem. 79 (2010) 643-649. https://doi.org/10.1016/j.radphyschem.2009.11.015
- B.D. Gupta, P.K. Tyagi, A.R. Ray, H. Singh, Radiation-induced grafting of 2- hydroxyethyl methacrylate onto polypropylene for biomedical applications. I. Effect of synthesis conditions, J. Macromol. Sci. Part A - Chem. 27 (1990) 831-841. https://doi.org/10.1080/10601329008544808
- M.H. Casimiro, M.L. Botelho, J.P. Leal, M.H. Gil, Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan, Radiat. Phys. Chem. 72 (2005) 731-735. https://doi.org/10.1016/j.radphyschem.2004.04.029
- E.M. Abdel-Bary, A.M. Dessouki, E.M. El Nesr, A.A. El Miligy, Radiation-induced grafting of binary monomer (acrylic acid/2-hydroxyethyl methacrylate) onto LDPE and PP films, Polym. Plast. Technol. Eng. 34 (2006) 383-403. https://doi.org/10.1080/03602559508012190
- X. Chen, A. Nouri, Y. Li, J. Lin, P.D. Hodgson, C. Wen, Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid, Biotechnol. Bioeng. 101 (2008) 378-387. https://doi.org/10.1002/bit.21900
- M. Bohner, J. Lemaitre, Can bioactivity be tested in vitro with SBF solution? Biomaterials 30 (2009) 2175-2179. https://doi.org/10.1016/j.biomaterials.2009.01.008
- S. Suzuki, L. Grondahl, D. Leavesley, E. Wentrup-Byrne, In vitro bioactivity of MOEP grafted ePTFE membranes for craniofacial applications, Biomaterials 26 (2005) 5303-5312. https://doi.org/10.1016/j.biomaterials.2005.01.061
- T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
- E.J. Castillo, J.L. Koenig, J.M. Anderson, J. Lo, Protein adsorption on hydrogels, Biomaterials 6 (1985) 338-345. https://doi.org/10.1016/0142-9612(85)90089-4
- D.B.G. Beamson, High Resolution XPS of Organic Polymers : the Scienta ESCA300 Database, John Wiley and Sons, New York, 1992.
- A. Chandler-Temple, P. Kingshott, E. Wentrup-Byrne, A.I. Cassady, L. Grondahl, Surface chemistry of grafted expanded poly(tetrafluoroethylene) membranes modifies the in vitro proinflammatory response in macrophages, J. Biomed. Mater. Res. 101 (2013) 1047-1058.
- J.K. Shim, H.S. Na, Y.M. Lee, H. Huh, Y.C. Nho, Surface modification of polypropylene membranes by gamma ray induced graft copolymerization and their solute permeation characteristics, J. Membr. Sci. 190 (2001) 215-226. https://doi.org/10.1016/S0376-7388(01)00445-8
- M.M. Nasef, Effect of solvents on radiation-induced grafting of styrene onto fluorinated polymer films, Polym. Int. 50 (2001) 338-346. https://doi.org/10.1002/pi.634
- A.F. Chandler-Temple, E. Wentrup-Byrne, H.J. Griesser, M. Jasieniak, A.K. Whittaker, L. Grondahl, Comprehensive characterization of grafted expanded poly(tetrafluoroethylene) for medical applications, Langmuir 26 (2010) 15409-15417. https://doi.org/10.1021/la1010677
- T.R. Dargaville, G.A. George, D.J.T. Hill, A.K. Whittaker, High energy radiation grafting of fluoropolymers, Prog. Mater. Sci. 28 (2003) 1355-1376.
- V. Haddadi-asl, R.P. Burford, J.L. Garnett, Radiation graft modification of ethylene-propylene rubber-i.Effect of monomer and substrate structure, Radiat. Phys. Chem. 44 (1994) 385-393. https://doi.org/10.1016/0969-806X(94)90077-9
- H.M. Nizam El-Din, A.W.M. El-Naggar, Synthesis and characterization of hydroxyethyl methacrylate/acrylamide responsive hydrogels, J. Appl. Polym. Sci. 95 (2005) 1105-1115. https://doi.org/10.1002/app.21326
- C.A. Scotchford, B. Sim, S. Downes, Water uptake and protein release characteristics of a new methacrylate-based polymer system, Polymer 38 (1997) 3869-3874. https://doi.org/10.1016/S0032-3861(96)00944-5
- J. Coates, Interpretation of infrared spectra, A practical approach, Encycl. Anal. Chem. (2000) 10815-10837.
- S. Edge, S. Walker, W.J. Feast, A.W.F. Pacynko, Surface modification of polyethylene by photochemical grafting with 2-hydroxyethylmethacrylate, J. Appl. Polym. Sci. 47 (1993) 1075-1082. https://doi.org/10.1002/app.1993.070470614
- E.T. Kang, Y. Zhang, Surface modification of fluoropolymers via molecular design, Adv. Mater. 12 (2000) 1481-1494. https://doi.org/10.1002/1521-4095(200010)12:20<1481::AID-ADMA1481>3.0.CO;2-Z
- S. Raynaud, E. Champion, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering, Biomaterials 23 (2002) 1073-1080. https://doi.org/10.1016/S0142-9612(01)00219-8
- N.M. Hidzir, D.J.T. Hill, D. Martin, L. Grondahl, In vitro mineralisation of grafted ePTFE membranes carrying carboxylate groups, Bioact. Mater. 2 (2017) 27-34. https://doi.org/10.1016/j.bioactmat.2017.02.002
Cited by
- Magnetic Superporous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Bone Tissue Engineering vol.13, pp.11, 2020, https://doi.org/10.3390/polym13111871
- Conformal Growth of Ultrathin Hydrophilic Coatings on Hydrophobic Surfaces Using Initiated Chemical Vapor Deposition vol.37, pp.25, 2020, https://doi.org/10.1021/acs.langmuir.1c00918
- Mechanical properties of polymeric biomaterials: Modified ePTFE using gamma irradiation vol.19, pp.1, 2020, https://doi.org/10.1515/chem-2021-0112