DOI QR코드

DOI QR Code

Gamma irradiation-induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto ePTFE for implant applications

  • Mohd Hidzir, Norsyahidah (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Radzali, Nur Ain Mohd (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Rahman, Irman Abdul (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Shamsudin, Siti Aisyah (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
  • Received : 2019.04.12
  • Accepted : 2020.03.15
  • Published : 2020.10.25

Abstract

The extreme hydrophobicity of expanded polytetrafluoroethylene (ePTFE) hinders bone-tissue integration, thus limiting the use of ePTFE in medical implant applications. To improve the potential of ePTFE as a biomaterial, 2-hydroxyethyl methacrylate (HEMA) was grafted onto the ePTFE surface using the gamma irradiation technique. The characteristics of the grafted ePTFE were successfully evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR), field-emission scanning electron microscopy (FESEM)/energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). Under the tensile test, the modified ePTFE was found to be more brittle and rigid than the untreated sample. In addition, the grafted ePTFE was less hydrophobic with a higher percentage of water uptake compared to the untreated ePTFE. The protein adsorption test showed that grafted ePTFE could adsorb protein, which was denoted by the presence of N peaks in the XPS analysis. Moreover, the formation of the globular mineral on the grafted ePTFE surface was successfully visualized using the FESEM analysis, with a ratio of 1.94 for Ca:P minerals by the EDX. To summarize, the capability of the modified ePTFE to show protein adsorption and mineralization indicates the improvement of the polymer properties, and it can potentially be used as a biomaterial for implant application.

Keywords

References

  1. B. Fayolle, L. Audouin, J. Verdu, Radiation induced embrittlement of PTFE, Polymer 44 (2003) 2773-2780. https://doi.org/10.1016/S0032-3861(03)00116-2
  2. P. Ducheyne, Comprehensive Biomaterials: Metallic, Ceramics and Polymeric Biomaterials, Elsevier, United Kingdom, 2011.
  3. B.D. Ratner, D.G. Castner, Surface Modification of Polymeric Materials, Springer, New York, 1997.
  4. S. Ebnesajjad, Expanded PTFE Applications Handbook : Technology, Manufacturing and Applications, Elsevier, United Kingdom, 2017.
  5. A.I. Cassady, N.M. Hidzir, L. Grondahl, Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications, J. Appl. Polym. Sci. 131 (2014) 1-14.
  6. A.F.V. Recum, T.G.V. Kooten, The influence of microtopography on cellular response and the implications for silicone implants, J. Biomater. Sci. Polym. Ed. 7 (1995) 181-198. https://doi.org/10.1163/156856295X00698
  7. N.M. Hidzir, D.J.T. Hill, E. Taran, D. Martin, L. Grondah, Argon plasma treatment-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes, Polymer 54 (2013) 6536-6546. https://doi.org/10.1016/j.polymer.2013.10.003
  8. I. Noh, in: U.S.P.A. Publication (Ed.), Method for Chemical Surface Modification of Polytetrafluoroethylene Materials, 2005.
  9. N.M. Hidzir, Q. Lee, D.J.T. Hill, F. Rasoul, L. Grondahl, Grafting of acrylic acid-coitaconic acid onto ePTFE and characterization of water uptake by the graft copolymers, J. Appl. Polym. Sci. 132 (2015) 41482.
  10. Z. Ismail, N.M. Hidzir, N.A.M. Radzali, I.A. Rahman, Gamma radiation-induced grafting of acetic acid onto expanded poly (tetrafluroethylene) membranes for biomaterial application, Malaysia J. Anal. Sci. 21 (2017) 527-534.
  11. N.M. Hidzir, D.J.T. Hill, D. Martin, L. Grondahl, Radiation-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes, Polymer 53 (2012) 6063-6071. https://doi.org/10.1016/j.polymer.2012.10.042
  12. E. Wentrup-Byrne, L. Grondahl, S. Suzuki, Methacryloxyethyl phosphategrafted expanded polytetrafluoroethylene membranes for biomedical applications, Polym. Int. 54 (2005) 1581-1588. https://doi.org/10.1002/pi.1902
  13. J.-P. Montheard, M. Chatzopoulos, D. Chappard, 2-Hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields, J. Macromol. Sci. Polym. Rev. 32 (1992) 1-34. https://doi.org/10.1080/15321799208018377
  14. J.M. Seidel, S.M. Malmonge, Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques, Mater. Res. 3 (2000) 79-83. https://doi.org/10.1590/S1516-14392000000300006
  15. S.L. Tomic, M.M. Micic, S.N. Dobic, J.M. Filipovic, E.H. Suljovrujic, Smart poly(2- hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application, Radiat. Phys. Chem. 79 (2010) 643-649. https://doi.org/10.1016/j.radphyschem.2009.11.015
  16. B.D. Gupta, P.K. Tyagi, A.R. Ray, H. Singh, Radiation-induced grafting of 2- hydroxyethyl methacrylate onto polypropylene for biomedical applications. I. Effect of synthesis conditions, J. Macromol. Sci. Part A - Chem. 27 (1990) 831-841. https://doi.org/10.1080/10601329008544808
  17. M.H. Casimiro, M.L. Botelho, J.P. Leal, M.H. Gil, Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan, Radiat. Phys. Chem. 72 (2005) 731-735. https://doi.org/10.1016/j.radphyschem.2004.04.029
  18. E.M. Abdel-Bary, A.M. Dessouki, E.M. El Nesr, A.A. El Miligy, Radiation-induced grafting of binary monomer (acrylic acid/2-hydroxyethyl methacrylate) onto LDPE and PP films, Polym. Plast. Technol. Eng. 34 (2006) 383-403. https://doi.org/10.1080/03602559508012190
  19. X. Chen, A. Nouri, Y. Li, J. Lin, P.D. Hodgson, C. Wen, Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid, Biotechnol. Bioeng. 101 (2008) 378-387. https://doi.org/10.1002/bit.21900
  20. M. Bohner, J. Lemaitre, Can bioactivity be tested in vitro with SBF solution? Biomaterials 30 (2009) 2175-2179. https://doi.org/10.1016/j.biomaterials.2009.01.008
  21. S. Suzuki, L. Grondahl, D. Leavesley, E. Wentrup-Byrne, In vitro bioactivity of MOEP grafted ePTFE membranes for craniofacial applications, Biomaterials 26 (2005) 5303-5312. https://doi.org/10.1016/j.biomaterials.2005.01.061
  22. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
  23. E.J. Castillo, J.L. Koenig, J.M. Anderson, J. Lo, Protein adsorption on hydrogels, Biomaterials 6 (1985) 338-345. https://doi.org/10.1016/0142-9612(85)90089-4
  24. D.B.G. Beamson, High Resolution XPS of Organic Polymers : the Scienta ESCA300 Database, John Wiley and Sons, New York, 1992.
  25. A. Chandler-Temple, P. Kingshott, E. Wentrup-Byrne, A.I. Cassady, L. Grondahl, Surface chemistry of grafted expanded poly(tetrafluoroethylene) membranes modifies the in vitro proinflammatory response in macrophages, J. Biomed. Mater. Res. 101 (2013) 1047-1058.
  26. J.K. Shim, H.S. Na, Y.M. Lee, H. Huh, Y.C. Nho, Surface modification of polypropylene membranes by gamma ray induced graft copolymerization and their solute permeation characteristics, J. Membr. Sci. 190 (2001) 215-226. https://doi.org/10.1016/S0376-7388(01)00445-8
  27. M.M. Nasef, Effect of solvents on radiation-induced grafting of styrene onto fluorinated polymer films, Polym. Int. 50 (2001) 338-346. https://doi.org/10.1002/pi.634
  28. A.F. Chandler-Temple, E. Wentrup-Byrne, H.J. Griesser, M. Jasieniak, A.K. Whittaker, L. Grondahl, Comprehensive characterization of grafted expanded poly(tetrafluoroethylene) for medical applications, Langmuir 26 (2010) 15409-15417. https://doi.org/10.1021/la1010677
  29. T.R. Dargaville, G.A. George, D.J.T. Hill, A.K. Whittaker, High energy radiation grafting of fluoropolymers, Prog. Mater. Sci. 28 (2003) 1355-1376.
  30. V. Haddadi-asl, R.P. Burford, J.L. Garnett, Radiation graft modification of ethylene-propylene rubber-i.Effect of monomer and substrate structure, Radiat. Phys. Chem. 44 (1994) 385-393. https://doi.org/10.1016/0969-806X(94)90077-9
  31. H.M. Nizam El-Din, A.W.M. El-Naggar, Synthesis and characterization of hydroxyethyl methacrylate/acrylamide responsive hydrogels, J. Appl. Polym. Sci. 95 (2005) 1105-1115. https://doi.org/10.1002/app.21326
  32. C.A. Scotchford, B. Sim, S. Downes, Water uptake and protein release characteristics of a new methacrylate-based polymer system, Polymer 38 (1997) 3869-3874. https://doi.org/10.1016/S0032-3861(96)00944-5
  33. J. Coates, Interpretation of infrared spectra, A practical approach, Encycl. Anal. Chem. (2000) 10815-10837.
  34. S. Edge, S. Walker, W.J. Feast, A.W.F. Pacynko, Surface modification of polyethylene by photochemical grafting with 2-hydroxyethylmethacrylate, J. Appl. Polym. Sci. 47 (1993) 1075-1082. https://doi.org/10.1002/app.1993.070470614
  35. E.T. Kang, Y. Zhang, Surface modification of fluoropolymers via molecular design, Adv. Mater. 12 (2000) 1481-1494. https://doi.org/10.1002/1521-4095(200010)12:20<1481::AID-ADMA1481>3.0.CO;2-Z
  36. S. Raynaud, E. Champion, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering, Biomaterials 23 (2002) 1073-1080. https://doi.org/10.1016/S0142-9612(01)00219-8
  37. N.M. Hidzir, D.J.T. Hill, D. Martin, L. Grondahl, In vitro mineralisation of grafted ePTFE membranes carrying carboxylate groups, Bioact. Mater. 2 (2017) 27-34. https://doi.org/10.1016/j.bioactmat.2017.02.002

Cited by

  1. Magnetic Superporous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Bone Tissue Engineering vol.13, pp.11, 2020, https://doi.org/10.3390/polym13111871
  2. Conformal Growth of Ultrathin Hydrophilic Coatings on Hydrophobic Surfaces Using Initiated Chemical Vapor Deposition vol.37, pp.25, 2020, https://doi.org/10.1021/acs.langmuir.1c00918
  3. Mechanical properties of polymeric biomaterials: Modified ePTFE using gamma irradiation vol.19, pp.1, 2020, https://doi.org/10.1515/chem-2021-0112