• 제목/요약/키워드: N-functions

검색결과 2,196건 처리시간 0.023초

가변논리소자에 의한 논리함수의 실현에 관한 연구 (A Study on the Realiation of Logical function by flexible Logical Cells)

  • 임재탁
    • 대한전자공학회논문지
    • /
    • 제11권4호
    • /
    • pp.1.1-11
    • /
    • 1974
  • 변경의 Parameter를 제어 함으로써 임의의 조합논리함수를 이차원가변논리회로로 실현하는 일반적이고 조직적인 방법을 개발하였다. n변수-n출력 조합논리회로의 진리치표를 상태할당에 의해서 상태가의 변환으로 포착하여 이를 다치일변수 영리수수의 실현문제로 취급하였다. 이 다위일변수 함수집합이 정규결합연산에 환하여 반군을 이룬다는 사실에 착안하여 3개의 기저함수를 정의하고 이 기저함수에 의하여 임의의 다치일변수함수를 생성하는 기저함수렬의 조직적 구성법을 구하였다. 기저함수를 실현하는 기본회로를 단위회로의 일차원 배열로 구성하고 오직 하나의 기본회로만으로 3개의 기저함수외에도 몇개의 기저함수의 계열과 또 기저함수의 역함수를 실현하도록 하였다. 이 기본회로를 이차원으르 배열하고 변경의 parameter만을 적절히 설정 함으로써 임의의 조합논리회로를 실현하는 알고리즘을 구성하였다.

  • PDF

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin;Mert, Oya;Yildiz, Ismet
    • 호남수학학술지
    • /
    • 제44권1호
    • /
    • pp.135-145
    • /
    • 2022
  • This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.

다치논리회로의 구성이론 (A Constructing theory of multiple-valued Switching functions)

  • 고경식;김현수
    • 대한전자공학회논문지
    • /
    • 제17권2호
    • /
    • pp.29-36
    • /
    • 1980
  • 논문에서는 Calofs체를 이용한 다치론이함수의 구성방법을 제시하였다. 먼저 단일변수다치논리함수의 구성총론을 전개하고 그 결과를 다변수다치논리함수구성에 확장하였다. 본 논문을 전개하는데 있어서 가장 근원이 되는 수학적 근거는 (1) GF(N)의 모든 원소의 합은 영이다. (2) GF(N)의 e0을 제외한 모든 원소의 적은 N이 만수일때는 e1이고, N이 기수일 때는 et( )이다. 라는 두 성질이다. 이 성질을 바탕으로 하여 비교적 간단하고 새로운 구성이론을 유도하고, 또 전개시의 각 계수를 함수적인 승법을 거치지 않고 직접 결정하는 과정을 제시하였다. 또 예제를 들어 구성이론을 뒷받침하였다.

  • PDF

CONVOLUTION PROPERTIES FOR GENERALIZED PARTIAL SUMS

  • Silberman, Herb
    • 대한수학회지
    • /
    • 제33권3호
    • /
    • pp.601-607
    • /
    • 1996
  • For functions $f(z) = \sum_{n = 0}^{\infty}a_n z^n$ and $g(z) = \sum_{n = 0}^{\infty} b_n z^n$ analytic in the unit disk $\Delta = {z : $\mid$z$\mid$ < 1}$, the convolution $f * g$ is defined by $(f * g)(z) = \sum_{n = 0}^{\infty}a_n b_n z^n$. Let S denote the family of functions $f(z) = z + \cdots$ analytic and univalent in $\Delta$ and K, St, C the subfamilies that are respectively convex, starlike, and close-to-convex.

  • PDF

ON UNIVERSAL FUNCTIONS

  • Aron, Richard;Markose, Dinesh
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.65-76
    • /
    • 2004
  • An entire function $f\;{\in}\;H(\mathbb{C})$ is called universal with respect to translations if for any $g\;{\in}\;H(\mathbb{C}),\;R\;>\;0,\;and\;{\epsilon}\;>\;0$, there is $n\;{\in}\;{\mathbb{N}}$ such that $$\mid$f(z\;+\;n)\;-\;g(z)$\mid$\;<\;{\epsilon}$ whenever $$\mid$z$\mid$\;{\leq}\;R$. Similarly, it is universal with respect to differentiation if for any g, R, and $\epsilon$, there is n such that $$\mid$f^{(n)}(z)\;-\;g(z)$\mid$\;<\;{\epsilon}\;for\;$\mid$z$\mid$\;{\leq}\;R$. In this note, we review G. MacLane's proof of the existence of universal functions with respect to differentiation, and we give a simplified proof of G. D. Birkhoff's theorem showing the existence of universal functions with respect to translation. We also discuss Godefroy and Shapiro's extension of these results to convolution operators as well as some new, related results and problems.

A GENERALIZED CLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH AL-OBOUDI OPERATOR INVOLVING CONVOLUTION

  • Sangle, N.D.;Metkari, A.N.;Joshi, S.B.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권5호
    • /
    • pp.887-902
    • /
    • 2021
  • In this paper, we have introduced a generalized class SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼), i ∈ {0, 1} of harmonic univalent functions in unit disc 𝕌, a sufficient coefficient condition for the normalized harmonic function in this class is obtained. It is also shown that this coefficient condition is necessary for its subclass 𝒯 SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼). We further obtained extreme points, bounds and a covering result for the class 𝒯 SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼). Also, show that this class is closed under convolution and convex combination. While proving our results, certain conditions related to the coefficients of 𝜙 and 𝜓 are considered, which lead to various well-known results.

On Generalized Integral Operator Based on Salagean Operator

  • Al-Kharsani, Huda Abdullah
    • Kyungpook Mathematical Journal
    • /
    • 제48권3호
    • /
    • pp.359-366
    • /
    • 2008
  • Let A(p) be the class of functions $f\;:\;z^p\;+\;\sum\limits_{j=1}^{\infty}a_jz^{p+j}$ analytic in the open unit disc E. Let, for any integer n > -p, $f_{n+p-1}(z)\;=\;z^p+\sum\limits_{j=1}^{\infty}(p+j)^{n+p-1}z^{p+j}$. We define $f_{n+p-1}^{(-1)}(z)$ by using convolution * as $f_{n+p-1}\;*\;f_{n+p-1}^{-1}=\frac{z^p}{(1-z)^{n+p}$. A function p, analytic in E with p(0) = 1, is in the class $P_k(\rho)$ if ${\int}_0^{2\pi}\|\frac{Re\;p(z)-\rho}{p-\rho}\|\;d\theta\;\leq\;k{\pi}$, where $z=re^{i\theta}$, $k\;\geq\;2$ and $0\;{\leq}\;\rho\;{\leq}\;p$. We use the class $P_k(\rho)$ to introduce a new class of multivalent analytic functions and define an integral operator $L_{n+p-1}(f)\;\;=\;f_{n+p-1}^{-1}\;*\;f$ for f(z) belonging to this class. We derive some interesting properties of this generalized integral operator which include inclusion results and radius problems.

q-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN THREE VARIABLES

  • Choi, June-Sang
    • 호남수학학술지
    • /
    • 제34권3호
    • /
    • pp.327-340
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Very recently, Choi defined a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}^2_n({\cdot})$ and presented their several generating functions. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in m variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, in the sequel of the above results for their possible general $q$-extensions in several variables, again, we aim at trying to define a $q$-extension of the generalized three variable Gottlieb polynomials ${\varphi}^3_n({\cdot})$ and present their several generating functions.

Radii of Starlikeness and Convexity for Analytic Functions with Fixed Second Coefficient Satisfying Certain Coefficient Inequalities

  • MENDIRATTA, RAJNI;NAGPAL, SUMIT;RAVICHANDRAN, V.
    • Kyungpook Mathematical Journal
    • /
    • 제55권2호
    • /
    • pp.395-410
    • /
    • 2015
  • For functions $f(z)=z+a_2z^2+a_3z^3+{\cdots}$ with ${\mid}a_2{\mid}=2b$, $b{\geq}0$, sharp radii of starlikeness of order ${\alpha}(0{\leq}{\alpha}<1)$, convexity of order ${\alpha}(0{\leq}{\alpha}<1)$, parabolic starlikeness and uniform convexity are derived when ${\mid}a_n{\mid}{\leq}M/n^2$ or ${\mid}a_n{\mid}{\leq}Mn^2$ (M>0). Radii constants in other instances are also obtained.

Special Function Inverse Series Pairs

  • Alsardary, Salar Yaseen;Gould, Henry Wadsworth
    • Kyungpook Mathematical Journal
    • /
    • 제50권2호
    • /
    • pp.177-193
    • /
    • 2010
  • Working with the various special functions of mathematical physics and applied mathematics we often encounter inverse relations of the type $F_n(x)=\sum\limits_{k=0}^{n}A^n_kG_k(x)$ and $ G_n(x)=\sum\limits_{k=0}^{n}B_k^nF_k(x)$, where 0, 1, 2,$\cdots$. Here $F_n(x)$, $G_n(x)$ denote special polynomial functions, and $A_k^n$, $B_k^n$ denote coefficients found by use of the orthogonal properties of $F_n(x)$ and $G_n(x)$, or by skillful series manipulations. Typically $G_n(x)=x^n$ and $F_n(x)=P_n(x)$, the n-th Legendre polynomial. We give a collection of inverse series pairs of the type $f(n)=\sum\limits_{k=0}^{n}A_k^ng(k)$ if and only if $g(n)=\sum\limits_{k=0}^{n}B_k^nf(k)$, each pair being based on some reasonably well-known special function. We also state and prove an interesting generalization of a theorem of Rainville in this form.