• Title/Summary/Keyword: N-functions

Search Result 2,196, Processing Time 0.034 seconds

REGIONS OF VARIABILITY FOR GENERALIZED α-CONVEX AND β-STARLIKE FUNCTIONS, AND THEIR EXTREME POINTS

  • Chen, Shaolin;Huang, Aiwu
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.557-569
    • /
    • 2010
  • Suppose that n is a positive integer. For any real number $\alpha$($\beta$ resp.) with $\alpha$ < 1 ($\beta$ > 1 resp.), let $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) be the class of analytic functions in the unit disk $\mathbb{D}$ with f(0) = f'(0) = $\cdots$ = $f^{(n-1)}(0)$ = $f^{(n)}(0)-1\;=\;0$, Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) > $\alpha$ (Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) < $\beta$ resp.) in $\mathbb{D}$, and for any ${\lambda}\;{\in}\;\bar{\mathbb{D}}$, let $K^{(n)}({\alpha},\;{\lambda})$ $K^{(n)}({\beta},\;{\lambda})$ resp.) denote a subclass of $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) whose elements satisfy some condition about derivatives. For any fixed $z_0\;{\in}\;\mathbb{D}$, we shall determine the two regions of variability $V^{(n)}(z_0,\;{\alpha})$, ($V^{(n)}(z_0,\;{\beta})$ resp.) and $V^{(n)}(z_0,\;{\alpha},\;{\lambda})$ ($V^{(n)}(z_0,\;{\beta},\;{\lambda})$ resp.). Also we shall determine the extreme points of the families of analytic functions which satisfy $f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\alpha})$ ($f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\beta})$ resp.) when f ranges over the classes $K^{(n)}(\alpha)$ ($K^{(n)(\beta)$ resp.) and $K^{(n)}({\alpha},\;{\lambda})$ ($K^{(n)}({\beta},\;{\lambda})$ resp.), respectively.

ON THE RELATION BETWEEN COMPACTNESS AND STRUCTURE OF CERTAIN OPERATORS ON SPACES OF ANALYTIC FUNCTIONS

  • ROBATI, B. KHANI
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.29-39
    • /
    • 2001
  • Let $\mathcal{B}$ be a Banach space of analytic functions defined on the open unit disk. Assume S is a bounded operator defined on $\mathcal{B}$ such that S is in the commutant of $M_zn$ or $SM_zn=-M_znS$ for some positive integer n. We give necessary and sufficient condition between compactness of $SM_z+cM_zS$ where c = 1, -1, i, -i, and the structure of S. Also we characterize the commutant of $M_zn$ for some positive integer n.

  • PDF

PRIME IDEALS IN LIPSCHITZ ALGEBRAS OF FINITE DIFFERENTIABLE FUNCTIONS

  • EBADIAN, ALI
    • Honam Mathematical Journal
    • /
    • v.22 no.1
    • /
    • pp.21-30
    • /
    • 2000
  • Lipschitz Algebras Lip(X, ${\alpha}$) and lip(X, ${\alpha}$) were first studied by D. R. Sherbert in 1964. B. Pavlovic in 1995 shown that in these algebras, the prime ideals containing a given prime ideal form a chain. In this paper, we show that the above property holds in $Lip^n(X,\;{\alpha})$ and $lip^n(X,\;{\alpha})$, the Lipschitz algebras of finite differentiable functions on a perfect compact place set X.

  • PDF

LYAPUNOV FUNCTIONS FOR NONLINEAR DIFFERENCE EQUATIONS

  • Choi, Sung Kyu;Cui, Yinhua;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.883-893
    • /
    • 2011
  • In this paper we study h-stability of the solutions of nonlinear difference system via the notion of $n_{\infty}$-summable similarity between its variational systems. Also, we show that two concepts of h-stability and h-stability in variation for nonlinear difference systems are equivalent. Furthermore, we characterize h-stability for nonlinear difference systems by using Lyapunov functions.

FEKETE-SZEGÖ INEQUALITY FOR A SUBCLASS OF NON-BAZILEVIĆ FUNCTIONS INVOLVING CHEBYSHEV POLYNOMIAL

  • Al-khafaji, Saba N.;Bulut, Serap;Juma, Abdul Rahman S.
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.503-511
    • /
    • 2021
  • In this present work, we obtain certain coefficients of the subclass 𝓗λ,𝛄(s, b, n) of non-Bazilević functions and estimate the relevant connection to the famous classical Fekete-Szegö inequality of functions belonging to this class.

k-FRACTIONAL INTEGRAL INEQUALITIES FOR (h - m)-CONVEX FUNCTIONS VIA CAPUTO k-FRACTIONAL DERIVATIVES

  • Mishra, Lakshmi Narayan;Ain, Qurat Ul;Farid, Ghulam;Rehman, Atiq Ur
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.357-374
    • /
    • 2019
  • In this paper, first we obtain some inequalities of Hadamard type for (h - m)-convex functions via Caputo k-fractional derivatives. Secondly, two integral identities including the (n + 1) and (n+ 2) order derivatives of a given function via Caputo k-fractional derivatives have been established. Using these identities estimations of Hadamard type integral inequalities for the Caputo k-fractional derivatives have been proved.

N-Terminal Acetylation-Targeted N-End Rule Proteolytic System: The Ac/N-End Rule Pathway

  • Lee, Kang-Eun;Heo, Ji-Eun;Kim, Jeong-Mok;Hwang, Cheol-Sang
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.169-178
    • /
    • 2016
  • Although $N{\alpha}$-terminal acetylation (Nt-acetylation) is a pervasive protein modification in eukaryotes, its general functions in a majority of proteins are poorly understood. In 2010, it was discovered that Nt-acetylation creates a specific protein degradation signal that is targeted by a new class of the N-end rule proteolytic system, called the Ac/N-end rule pathway. Here, we review recent advances in our understanding of the mechanism and biological functions of the Ac/N-end rule pathway, and its crosstalk with the Arg/N-end rule pathway (the classical N-end rule pathway).