• Title/Summary/Keyword: N-acetyl cysteine (NAC)

Search Result 81, Processing Time 0.028 seconds

N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils

  • Hasan, Md. Ashraful;Ahn, Won-Gyun;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.449-457
    • /
    • 2016
  • N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though $Ca^{2+}$ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ($[Ca^{2+}]_i$) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on $[Ca^{2+}]_i$ in human neutrophils. We observed that NAC ($1{\mu}M{\sim}1mM$) and cysteine ($10{\mu}M{\sim}1mM$) increased $[Ca^{2+}]_i$ in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in $[Ca^{2+}]_i$ in human neutrophils was observed. In $Ca^{2+}$-free buffer, NAC- and cysteine-induced $[Ca^{2+}]_i$ increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in $[Ca^{2+}]_i$ in human neutrophils occur through $Ca^{2+}$ influx. NAC- and cysteine-induced $[Ca^{2+}]_i$ increase was effectively inhibited by calcium channel inhibitors SKF96365 ($10{\mu}m$) and ruthenium red ($20{\mu}m$). In $Na^+$-free HEPES, both NAC and cysteine induced a marked increase in $[Ca^{2+}]_i$ in human neutrophils, arguing against the possibility that $Na^+$-dependent intracellular uptake of NAC and cysteine is necessary for their $[Ca^{2+}]_i$ increasing activity. Our results show that NAC and cysteine induce $[Ca^{2+}]_i$ increase through $Ca^{2+}$ influx in human neutrophils via SKF96365- and ruthenium red-dependent way.

Effect of N-acetyl-L-cysteine on human chronic myeloid leukemia cells KCL22 treated with mitomycin C

  • Simonyan, Anna;Hovhannisyan, Galina;Aroutiounian, Rouben;Kim, Jin Kyu
    • Journal of Ecology and Environment
    • /
    • v.37 no.1
    • /
    • pp.31-34
    • /
    • 2014
  • The effectiveness of N-acetyl-L-cysteine (NAC) to protect blood cells against Mitomycin C (MMC) induced genotoxicity was investigated in human chronic myeloid leukemia cells (KCL22) using the alkaline comet assay. The comet assay was selected as sensitive and rapid method for analysis of DNA damage and repair in individual cells. NAC treatment alone did not produce any damage in KCL22 cell. But NAC was found to be effective in reducing genotoxic damage in KCL22 cells exposed to MMC. These results confirm the literature data that, given the safety and ability to reduce DNA damage. NAC may be useful to prevent drug-mediated genotoxicity.

The Protective Effects of N-Acetyl-L-cysteine on Cadmium-induced Cell Apoptosis in Rat Testis

  • Kim, Ji-Sun;Soh, Jaemog
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.417-425
    • /
    • 2019
  • Cadmium (Cd) generates reactive oxygen species (ROS), which in turn cause the apoptosis of various cell types including developing germ cells in rodent testis. Ascorbic acids (AA), one of the ROS scavengers, had been reported to protect against Cd-induced apoptosis. N-Acetyl-L-cysteine (NAC), another ROS scavenger, is known to remove ROS and alleviate the Cd-induced apoptosis in various cell types. In this study we tried to elucidate how NAC affected on Cd-induced cell apoptosis in rat testis. Rats were administered with NAC before and after Cd treatment and then testicular cell apoptosis was examined. NAC treatment resulted in the reduction of Cd-induced chromosomal DNA fragmentation in agarose gel electrophoresis. Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay showed that treatment of NAC reduced the Cd-induced apoptosis of germ cells. The administration of NAC showed that the translocation of apoptosis inducing factor (AIF) from mitochondria to nucleus was prevented, which indicated that the mechanism of Cd-induced testicular apoptosis is mediated through the release of AIF in caspase-independent manner. Taken together, the NAC may remove Cd-induced ROS and protect ROS-induced cell apoptosis in rat testis.

Gene Expression of Glutathione Peroxidase in $Saccharomyces$ $cerevisiae$ Treated with $N$-acetyl-L-cysteine and Gamma-rays ($Saccharomyces$ $cerevisiae$에서 $N$-acetyl-L-cysteine 처리와 감마선 조사에 따른 Glutathione Peroxidase 유전자 발현)

  • Park, Ji-Young;Baek, Dong-Won;Nili, Mohammad;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.258-264
    • /
    • 2011
  • Glutathione (GSH) has important roles in cellular defense against oxidative stress, 1) direct scavenging of reactive oxygen species (ROS), and 2) coenzyme of ROS scavenging enzyme like glutathione peroxidases (GPx). GSH peroxidase reduces free hydrogen peroxide to water using 2GSH. $N$-acetyl-L-cysteine (NAC), one of the antioxidants, is used as a precursor for intracellular GSH. In this study, relation of GSH, NAC, and GSH peroxidase was investigated through transcriptional expression of $GPX1$ and $GPX2$, which are GSH peroxidase encoding genes, in yeast cells treated with 0 mM to 20 mM of NAC or in combination with 100 Gy gamma-rays. The transcriptional expression of $GPX1$ and $GPX2$ was induced by NAC and 100 Gy gamma-rays. The gene expression of both GSH peroxidases was decreased with increasing concentrations of NAC in irradiated yeast cells. These results suggest that elevation of intracellular GSH by NAC and oxidative stress and ROS generated from gamma-rays induces expression of GSH peroxidase genes, and that NAC can protect the yeast cells against ROS generated from gamma-rays through direct scavenging of ROS and transcriptional activation of GSH peroxidase.

Cell Survival and Expression of Superoxide Dismutase and Catalase Genes in Saccharomyces cerevisiae Treated with N-acetyl-L-cysteine and Ionizing Radiation (Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 Superoxide Dismutase와 Catalase 유전자 발현)

  • Park, Ji-Young;Baek, Dong-Won;Nili, Mohammad;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • N-acetyl-L-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC used as a radioprotector against ionizing radiation (IR)-induced injury and damage. The aim of this study was to evaluate the radioprotective effects of NAC against IR-induced cell damage in Saccharomyces cerevisiae and the antioxidative effect of NAC on transcriptional level of yeast antioxidant enzyme genes such as superoxide dismutase (SOD) and catalase. In the present study, yeast cells were pretreated with various concentrations of NAC and/or irradiated with various doses of gamma rays. The cell viability was measured by counting the cell forming unit (CFU). The quantitative real-time PCR was performed for analysis of gene expression of SOD and catalase. The viability of irradiated cells was not improved by pretreatment with NAC. Ionizing radiation with 100 Gy highly induced the gene expression of antioxidant enzymes. In the irradiated group with NAC pretreatment, the gene expression of SOD and catalase was gradually reduced with the increased concentrations of NAC. These results indicate that NAC can act as a useful antioxidant to scavenge reactive oxygen species in vivo, but does not protect cells against IR-induced cell death in S. cerevisiae.

Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with ZrO2 Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2855-2860
    • /
    • 2012
  • The coating N-acetyl cysteine (NAC) on gold surfaces may be used to design the distribution of either gold particle adsorbed to the $ZrO_2$ surface or vice versa by adjusting the electrostatic interactions. In this study, it was performed to find out electrostatic properties of the NAC-coated-gold surface and the $ZrO_2$ surface. The surface forces between the surfaces were measured as a function of the salt concentration and pH value using the AFM. By applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface forces, the surface potential and charge density of the surfaces were quantitatively acquired for each salt concentration and each pH value. The dependence of the potential and charge density on the concentration was explained with the law of mass action, and the pH dependence was with the ionizable groups on the surface.

Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with TiO2 Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.902-906
    • /
    • 2009
  • It is found that that the coating N-acetyl cysteine (NAC) on gold surfaces may be used to design the distribution of either gold particle adsorbed to the $TiO_2$ surface or vice versa by adjusting the electrostatic interactions. In this study, we investigated electrostatic properties of the NAC-coated-gold surface and the $TiO_2$ surface. The surface forces between the surfaces were measured as a function of the salt concentration and pH value using the AFM. By applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface forces, the surface potential and charge density of the surfaces were quantitatively acquired for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was explained with the law of mass action, and the pH dependence was with the ionizable groups on the surface.

Lipid Modulatory Functions of Cysteine Compounds Found in Genus Allium Plants in Diabetic Mice (Allium 속 식물 Cysteine화합물이 당뇨 쥐의 지질대사에 미치는 영향)

  • Choi, Seong-Hee;Park, Jeong-Ro
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.361-367
    • /
    • 2010
  • In this study, cysteine compounds found in genus Allium plants, including N-acetyl cysteine(NAC), S-allyl cysteine(SAC), S-ethyl cysteine(SEC), and S-methyl cysteine(SMC), were examined for effects on blood glucose, glucose tolerance, and plasma lipid concentrations in streptozotocin(STZ)-induced diabetic mice. In the mice, the ingestion of these cysteine compounds did not affect blood glucose levels significantly. However, their ingestion did improve the diabetic symptoms of polydipsia, polyphagia, polyuria, and weight loss. Glucose tolerance was also found to be improved in the STZ diabetic animals by feeding the cysteine compounds. Treatment of the compounds also caused a slight decrease in plasma concentrations of total cholesterol along with increases in HDL-cholesterol and slight decreases in LDL-cholesterol, resulting in a significant decrease in the atherogenic index of plasma in the diabetic animals. They also showed reductions of liver triglyceride content to relieve diabetic fatty liver syndrome. In summary, the cysteine compounds such as NAC, SAC, SEC, and SMC, found in genus Allium plants, had certain beneficial effects on blood glucose metabolism along with preventing abnormalities in lipid metabolism, a complication of diabetes, by improving the atherogenic index of plasma and fatty liver in STZ-induced diabetic mice.

The Effect of N-acetyl cysteine (NAC) loading on the bone formation surrounding sandblasted and large-grit and acid-etched implants in the dog: A pilot study (성견에 식립된 sandblasted and large-grit and acid-etched 임플란트에서 N-acetyl cysteine(NAC)의 탑재가 주위 골형성에 미치는 영향에 대한 선행연구)

  • Seo, Jae-Min;Kim, In-Ju;Bae, Min-Soo;Lee, Jung-Jin;Ahn, Seung-Geun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.2
    • /
    • pp.77-85
    • /
    • 2020
  • Purpose: The aim of the present study was to investigate the effects of N-acetyl cysteine (NAC) loading on the bone formation surrounding sandblasted, large-grit and acid-etched (SLA) implants. Materials and methods: Implantation of NAC loaded SLA implants (NSI group) and SLA implants (SI group) was performed bilaterally in the mandible of 4 adult beagle dogs (each group, n = 8). The animals were sacrificed after a healing period of 3 and 6 weeks, respectively (n = 2 animal each). Dissected blocks were processed for histomorphometrical analysis. Bone to implant contact percentage (BIC%) and bone volume (BV%) were assessed histomorphometrically. Results: BIC% of NAC loaded SLA implants were about 50% higher than that of SLA implants at 3 weeks of bone healing, but not significantly (51.79 vs 35.43%; P=.185). BV% of NAC loaded SLA implants were significantly higher than that of SLA implants at 3 weeks of bone healing (45.09 vs 37.57 %; P=.044). At 6 weeks of bone healing, BIC% and BV% of two experimental groups were similar (P>.05). Conclusion: Within the limits of the present study, NAC loading have a positive effects on the early bone formation surrounding SLA implants. So, it might be concluded that NAC loading enhance the osseointegration and shorten the healing time after implantation of the SLA implants.

The antioxidant roles of L-carnitine and N-acetyl cysteine against oxidative stress on human sperm functional parameters during vitrification

  • Ghorbani, Fatemeh;Nasiri, Zohreh;Koohestanidehaghi, Yeganeh;Lorian, Keivan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.316-321
    • /
    • 2021
  • Objective: Amino acids can protect sperm structure in cryopreservation due to their antioxidant properties. Therefore, the present study aimed to investigate the protective effect of L-carnitine (LC) and N-acetyl cysteine (NAC) on motility parameters, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA damage, and human sperm intracellular reactive oxygen species (ROS) during vitrification. Methods: Twenty normal human sperm samples were examined. Each sample was divided into six equal groups: LC (1 and 10 mM), NAC (5 and 10 mM), and cryopreserved and fresh control groups. Results: The groups treated with LC and NAC showed favorable findings in terms of motility parameters, DNA damage, and MMP. Significantly higher levels of intracellular ROS were observed in all cryopreserved groups than in the fresh group (p≤0.05). The presence of LC and NAC at both concentrations caused an increase in PMI, MMP, and progressive motility parameters, as well as a significant reduction in intracellular ROS compared to the control group (p≤0.05). The concentrations of the amino acids did not show any significant effect. Conclusion: LC and NAC are promising as potential additives in sperm cryopreservation.