Gene Expression of Glutathione Peroxidase in $Saccharomyces$ $cerevisiae$ Treated with $N$-acetyl-L-cysteine and Gamma-rays

$Saccharomyces$ $cerevisiae$에서 $N$-acetyl-L-cysteine 처리와 감마선 조사에 따른 Glutathione Peroxidase 유전자 발현

  • Park, Ji-Young (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Baek, Dong-Won (Division of Applied Life Sciences (World Class University Program), Gyeongsang National University) ;
  • Nili, Mohammad (Dawnesh Radiation Research Institute) ;
  • Kim, Jin-Kyu (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute)
  • 박지영 (한국원자력연구원 방사선과학연구소) ;
  • 백동원 (경상대학교 대학원 응용생명과학부) ;
  • 모하마드닐리 (스페인 도네시방사선연구소) ;
  • 김진규 (한국원자력연구원 방사선과학연구소)
  • Received : 2011.08.16
  • Accepted : 2011.10.18
  • Published : 2011.11.30

Abstract

Glutathione (GSH) has important roles in cellular defense against oxidative stress, 1) direct scavenging of reactive oxygen species (ROS), and 2) coenzyme of ROS scavenging enzyme like glutathione peroxidases (GPx). GSH peroxidase reduces free hydrogen peroxide to water using 2GSH. $N$-acetyl-L-cysteine (NAC), one of the antioxidants, is used as a precursor for intracellular GSH. In this study, relation of GSH, NAC, and GSH peroxidase was investigated through transcriptional expression of $GPX1$ and $GPX2$, which are GSH peroxidase encoding genes, in yeast cells treated with 0 mM to 20 mM of NAC or in combination with 100 Gy gamma-rays. The transcriptional expression of $GPX1$ and $GPX2$ was induced by NAC and 100 Gy gamma-rays. The gene expression of both GSH peroxidases was decreased with increasing concentrations of NAC in irradiated yeast cells. These results suggest that elevation of intracellular GSH by NAC and oxidative stress and ROS generated from gamma-rays induces expression of GSH peroxidase genes, and that NAC can protect the yeast cells against ROS generated from gamma-rays through direct scavenging of ROS and transcriptional activation of GSH peroxidase.

Glutathione (GSH)은 직접적으로 활성산소종을 제거하거나 GSH peroxidase와 같은 활성산소종 제거 효소의 조효소로써, 산화적 스트레스로부터 세포를 방어하는 데 중요한 역할을 한다. GSH peroxidase는 두 분자의 GSH을 이용해 세포 내 과산화수소를 물로 전환한다. $N$-acetyl-L cysteine (NAC)는 항산화제 중 하나로 세포 내 GSH의 전구물질로 이용된다. 본 연구는, 0mM에서 20mM의 NAC 단독 처리 또는 100 Gy 감마선과 복합 처리한 효모세포에서 GSH peroxidase를 코드화(encoding)하는 유전자인 $GPX1$$GPX2$의 전사적 발현을 통해 GSH, NAC와 GSH peroxidase의 연관성을 알아보았다. $GPX1$$GPX2$의 전사적 발현은 NAC와 100 Gy 감마선에 의해 유도되었다. 조사된 효모세포에서 NAC의 증가 농도에 따라 GSH peroxidase 두 유전자의 발현은 감소되었다. 이러한 결과로, NAC에 의해 증가된 세포 내 GSH는 GSH peroxidase 유전자의 전사적 발현을 유도하며, NAC는 감마선으로부터 생성된 활성산소종 직접적 제거와 GSH peroxidase 유전자의 전사적 발현을 유도함으로써 세포를 보호할 수 있다는 것이 밝혀졌다.

Keywords

References

  1. 박지영, 백동원, 모하마드닐리, 김진규. 2011. Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 superoxide dismutase and catalase 유전자 발현. 환경생물. 29:61-67.
  2. Aruoma OI, B Halliwell, BM Hoey and J Butler. 1989. The antioxidant action of N-acetylcysteineL its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 6:593-597. https://doi.org/10.1016/0891-5849(89)90066-X
  3. Atkuri KR, JJ Mantovani and LA Herzenberg. 2007. N-Acetylcysteine-a safe antidote for cystene/glutathione deficiency. Curr. Opin. Pharmacol. 7:1-5. https://doi.org/10.1016/j.coph.2006.12.002
  4. Berg JM, JL Tymoczko and L Stryer. 2004. Biochemistry, Fifth edition. p.506.
  5. Brennan RJ and RH Schiestl. 2001. Persistent genomic instability in the yeast Saccharomyces cerevisiae induced by ionizing radiation and DNA-damaging agents. Radiat. Res. 155:768-777. https://doi.org/10.1667/0033-7587(2001)155[0768:PGIITY]2.0.CO;2
  6. Circu ML and TY AW. 2008. Glutathione and apoptosis. Free Radical Research 42:689-706. https://doi.org/10.1080/10715760802317663
  7. Davis W, Z Ronai and KD Tew. 2001. Cellular thiols and reactive oxygen species in drug induced apoptosis. Perspectives in Pharmacology 296:900017-869993.
  8. Delaunay A, D Pflieger, MB Barrault, J Vinh and MB Toledano. 2002. A thiol peroxidase is an $H_2O_2$ receptor and redoxtransducer in gene activation. Cell 111:471-481. https://doi.org/10.1016/S0092-8674(02)01048-6
  9. Dickinson DA and HJ Forman. 2002. Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 64:1019-1026. https://doi.org/10.1016/S0006-2952(02)01172-3
  10. Esnault M, F Legue and C Chenal. 2010. Ionizing radiation: Advances in plant response. Environmental and Experimental Botany 68:231-237. https://doi.org/10.1016/j.envexpbot.2010.01.007
  11. Friesen C, Y Kiess and KM Debatin. 2004. A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells. Cell Death Differ. 11:S73-S85.
  12. Inoue Y, T Matsuda, K Sugiyama, S Izawa and A Kimura. 1999. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274:27002-27009. https://doi.org/10.1074/jbc.274.38.27002
  13. Jamieson DJ. 1998. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511-1527. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  14. Kataoka Y, JS Murley, KL Baker and DJ Grdina. 2007. Relationship between phosphorylated histone H2AX formation and cell survival in human microvascular endothelial cells (HMEC) as a function of ionizing radiation exposure in the presence or absence of thiol-containing drugs. Radiat. Res. 168:106-114. https://doi.org/10.1667/RR0975.1
  15. Kho CW, PY Lee, KH Bae, S Cho, ZW Lee, BC Park, S Kang, DH Lee and SG Park. 2006. Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem. Biophys. Res. Commun. 348:25-35. https://doi.org/10.1016/j.bbrc.2006.06.067
  16. Kim KY, TY Rhim, I Choi and SS Kim. 2001. N-Acetylcysteine induces cell cycle arrest in hepatic stellate cells through its reducing activity. J. Biol. Chem. 276:40591-40598. https://doi.org/10.1074/jbc.M100975200
  17. Musallam L, C Ethier, PS Haddad, F Denizeau and M Bilodeau. 2002. Resistance to Fas-induced apoptosis in hepatocytes: role of GSH depletion by cell isolation and culture. Am. J. Physiol. Gastrointest. Liver Physiol. 283:G709-G718.
  18. Nakamura H, K Nakamura and J Yodoi. 1997. Redox regulation of cellular activation. Annu. Res. Immunol. 15:351-369. https://doi.org/10.1146/annurev.immunol.15.1.351
  19. Neal R, RH Matthews, P Lutz and N Ercal, 2003. Antioxidant role of N-acetyl cysteine isomers following high dose irradiation. Free Radic. Biol. Med. 34:689-695. https://doi.org/10.1016/S0891-5849(02)01372-2
  20. Phelps DT, SM Deneke, DL Daley and BL Fanburg. 1992. Elevation of glutathione levels in bovine pulmonary artery endothelial cells by N-acetylcysteine. Am. J. Respir. Cell Mol. Biol. 7:293-299. https://doi.org/10.1165/ajrcmb/7.3.293
  21. Pias EK and TY Aw. 2002. Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species production. Raseb. J. 16: 781-790.
  22. Pocernich CB, ML Fontaine and DA Butterfield. 2000. In-vivo glutathione elevation protects against hydroxyl free radicalinduced protein oxidation in rat brain. Neurochem. Int. 36:185-191. https://doi.org/10.1016/S0197-0186(99)00126-6
  23. Powis G, M Briehl and J Oblong. 1995. Redox signaling and the control of cell growth and death. Pharmacol. Ther. 68:149-173. https://doi.org/10.1016/0163-7258(95)02004-7
  24. Raftos JE, S Whillier, BE Chapman and PW Kuchel. 2007. Kinetics of uptake and deacetylation of N-acetylcysteine by human erythrocytes. Int. J. Biochem. Cell. Biol. 39:1698-1706. https://doi.org/10.1016/j.biocel.2007.04.014
  25. Reliene R, JM Pollard, Z Sobol, B Trouiller, RA Gatti and RH Schiestl. 2009. N-acetyl cysteine protects against ionizing radiation-induced DNA damage but not against cell killing in yeast and mammals. Mutat. Res. 665:37-43. https://doi.org/10.1016/j.mrfmmm.2009.02.016
  26. Schroeder CP, AK Godwin, PJ O'Dwyer, KD Tew, TC Hamilton and RF Ozols. 1996. Glutathione and drug resistance. Cancer Invest. 14:158-168. https://doi.org/10.3109/07357909609018891
  27. Sies H. 1997 Oxidative stress: oxidant and antioxidants. Exp. Physiol. 82:291-295.
  28. Sjodin K, E Nilsson, A Hallberg and A. Tunek. 1989. Metabolism of N-acetyl-L-cysteine. Some structural requirements for the deacetylation and consequences for the oral bioavailability. Biochem. Pharmacol. 38:3981-3985. https://doi.org/10.1016/0006-2952(89)90677-1
  29. Ward JF. 1985. Biochemistry of DNA lesions. Radiat. Res. Suppl. 8:S103-111.
  30. Watson RW, OD Rotstein, M Jimenez, J Parodo, JC Marshall. 1997. Augmented intracellular glutathione inhibits Fastriggered apoptosis of activated human neutrophils. Blood 89:4175-4181.