Browse > Article
http://dx.doi.org/10.4047/jkap.2020.58.2.77

The Effect of N-acetyl cysteine (NAC) loading on the bone formation surrounding sandblasted and large-grit and acid-etched implants in the dog: A pilot study  

Seo, Jae-Min (Department of Prosthodontics, School of Dentistry, Jeonbuk National University)
Kim, In-Ju (Department of Prosthodontics, School of Dentistry, Jeonbuk National University)
Bae, Min-Soo (Department of Prosthodontics, School of Dentistry, Jeonbuk National University)
Lee, Jung-Jin (Department of Prosthodontics, School of Dentistry, Jeonbuk National University)
Ahn, Seung-Geun (Department of Prosthodontics, School of Dentistry, Jeonbuk National University)
Publication Information
The Journal of Korean Academy of Prosthodontics / v.58, no.2, 2020 , pp. 77-85 More about this Journal
Abstract
Purpose: The aim of the present study was to investigate the effects of N-acetyl cysteine (NAC) loading on the bone formation surrounding sandblasted, large-grit and acid-etched (SLA) implants. Materials and methods: Implantation of NAC loaded SLA implants (NSI group) and SLA implants (SI group) was performed bilaterally in the mandible of 4 adult beagle dogs (each group, n = 8). The animals were sacrificed after a healing period of 3 and 6 weeks, respectively (n = 2 animal each). Dissected blocks were processed for histomorphometrical analysis. Bone to implant contact percentage (BIC%) and bone volume (BV%) were assessed histomorphometrically. Results: BIC% of NAC loaded SLA implants were about 50% higher than that of SLA implants at 3 weeks of bone healing, but not significantly (51.79 vs 35.43%; P=.185). BV% of NAC loaded SLA implants were significantly higher than that of SLA implants at 3 weeks of bone healing (45.09 vs 37.57 %; P=.044). At 6 weeks of bone healing, BIC% and BV% of two experimental groups were similar (P>.05). Conclusion: Within the limits of the present study, NAC loading have a positive effects on the early bone formation surrounding SLA implants. So, it might be concluded that NAC loading enhance the osseointegration and shorten the healing time after implantation of the SLA implants.
Keywords
Implant; N-acetyl cysteine (NAC); Sandblasted and large-grit and acid-etched;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lai HC, Zhuang LF, Zhang ZY, Wieland M, Liu X. Bone apposition around two different sandblasted, large-grit and acidetched implant surfaces at sites with coronal circumferential defects: an experimental study in dogs. Clin Oral Implants Res 2009;20:247-53.   DOI
2 Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants 2000;15:76-94.
3 Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902.   DOI
4 Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 2000;84:522-34.   DOI
5 Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 1998;40:1-11.   DOI
6 Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res 1998;9:11-9.   DOI
7 Akimoto K1, Becker W, Persson R, Baker DA, Rohrer MD, O'Neal RB. Evaluation of titanium implants placed into simulated extraction sockets: a study in dogs. Int J Oral Maxillofac Implants 1999;14:351-60.
8 Botticelli D, Berglundh T, Buser D, Lindhe J. Appositional bone formation in marginal defects at implants. Clin Oral Implants Res 2003;14:1-9.   DOI
9 Botticelli D, Berglundh T, Buser D, Lindhe J. The jumping distance revisited: An experimental study in the dog. Clin Oral Implants Res 2003;14:35-42.   DOI
10 Botticelli D, Berglundh T, Lindhe J. The influence of a biomaterial on the closure of a marginal hard tissue defect adjacent to implants. An experimental study in the dog. Clin Oral Implants Res 2004;15:285-92.   DOI
11 Botticelli D, Persson LG, Lindhe J, Berglundh T. Bone tissue formation adjacent to implants placed in fresh extraction sockets: an experimental study in dogs. Clin Oral Implants Res 2006;17:351-8.   DOI
12 Jung UW, Kim CS, Choi SH, Cho KS, Inoue T, Kim CK. Healing of surgically created circumferential gap around nonsubmerged-type implants in dogs: a histomorphometric study. Clin Oral Implants Res 2007;18:171-8.   DOI
13 Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, Becker J. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol 2007;78:2171-84.   DOI
14 Roccuzzo M, Bunino M, Prioglio F, Bianchi SD. Early loading of sandblasted and acid-etched (SLA) implants: a prospective split-mouth comparative study. Clin Oral Implants Res 2001;12:572-8.   DOI
15 Cochran DL, Buser D, ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, Peters F, Simpson JP. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. Clin Oral Implants Res 2002;13:144-53.   DOI
16 Bornstein MM, Lussi A, Schmid B, Belser UC, Buser D. Early loading of nonsubmerged titanium implants with a sandblasted and acid-etched (SLA) surface: 3-year results of a prospective study in partially edentulous patients. Int J Oral Maxillofac Implants 2003;18:659-66.
17 Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol 1997;68:186-98.   DOI
18 Szmukler-Moncler S1, Perrin D, Ahossi V, Magnin G, Bernard JP. Biological properties of acid etched titanium implants: effect of sandblasting on bone anchorage. J Biomed Mater Res B Appl Biomater 2004;68:149-59.
19 Trisi P, Marcato C, Todisco M. Bone-to-implant apposition with machined and MTX microtextured implant surfaces in human sinus grafts. Int J Periodontics Restorative Dent 2003;23:427-37.
20 Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Schwartz Z. Titanium surface roughness alters responsiveness of MG63 osteoblastlike cells to 1 alpha,25-(OH)2D3. J Biomed Mater Res 1998;39:77-85.   DOI
21 Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast- like MG-63 cells. J Biomed Mater Res 1996;32:55-63.   DOI
22 Cochran DL. The scientific basis for and clinical experiences with Straumann implants including the ITI Dental Implant System: a consensus report. Clin Oral Implants Res 2000;11:33-58.   DOI
23 Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33.   DOI
24 Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 2005;74:49-58.
25 Eckhardt A, Gerstmayr N, Hiller KA, Bolay C, Waha C, Spagnuolo G, Camargo C, Schmalz G, Schweikl H. TEGDMA-induced oxidative DNA damage and activation of ATM and MAP kinases. Biomaterials 2009;30:2006-14.   DOI
26 Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 2001;288:275-9.   DOI
27 Lee DH, Lim BS, Lee YK, Yang HC. Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol 2006;22:39-46.   DOI
28 Mody N1, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 2001;31:509-19.   DOI
29 Ziment I. Acetylcysteine: a drug with an interesting past and a fascinating future. Respiration 1986;50:26-30.   DOI
30 Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res 2006;85:870-7.   DOI
31 Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983;52:711-60.   DOI
32 Lee YH, Lee NH, Bhattarai G, Oh YT, Yu MK, Yoo ID, Jhee EC, Yi HK. Enhancement of osteoblast biocompatibility on titanium surface with Terrein treatment. Cell Biochem Funct 2010;28:678-85.   DOI
33 Lee YH, Bhattarai G, Park IS, Kim GR, Kim GE, Lee MH, Yi HK. Bone regeneration around N-acetyl cysteine-loaded nanotube titanium dental implant in rat mandible. Biomaterials 2013;34:10199-208.   DOI
34 Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003;67:932-49.   DOI
35 Trisi P, Lazzara R, Rebaudi A, Rao W, Testori T, Porter SS. Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. J Periodontol 2003;74:945-56.   DOI
36 Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials 2007;28:5058-67.   DOI
37 Wennerberg A, Albrektsson T, Andersson B. Design and surface characteristics of 13 commercially available oral implant systems. Int J Oral Maxillofac Implants 1993;8:622-33.
38 Park JY, Davies JE. Red blood cell and platelet interactions with titanium implant surfaces. Clin Oral Implants Res 2000;11:530-9.   DOI
39 Trisi P, Lazzara R, Rao W, Rebaudi A. Bone-implant contact and bone quality: evaluation of expected and actual bone contact on machined and osseotite implant surfaces. Int J Periodontics Restorative Dent 2002;22:535-45.
40 Perrin D, Szmukler-Moncler S, Echikou C, Pointaire P, Bernard JP. Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin Oral Implants Res 2002;13:465-9.   DOI
41 Shalabi MM, Gortemaker A, Van't Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: a systematic review. J Dent Res 2006;85:496-500.   DOI
42 Feng YF, Wang L, Zhang Y, Li X, Ma ZS, Zou JW, Lei W, Zhang ZY. Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. Biomaterials 2013;34:2234-43.   DOI
43 Yamada M, Minamikawa H, Ueno T, Sakurai K, Ogawa T. Nacetyl cysteine improves affinity of beta-tricalcium phosphate granules for cultured osteoblast-like cells. J Biomater Appl 2012;27:27-36.   DOI
44 Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.
45 Mayahara K, Yamaguchi A, Takenouchi H, Kariya T, Taguchi H, Shimizu N. Osteoblasts stimulate osteoclastogenesis via RANKL expression more strongly than periodontal ligament cells do in response to PGE(2). Arch Oral Biol 2012;57:1377-84.   DOI
46 Tripuwabhrut P, Mustafa M, Gjerde CG, Brudvik P, Mustafa K. Effect of compressive force on human osteoblast-like cells and bone remodelling: an in vitro study. Arch Oral Biol 2013;58:826-36.   DOI
47 Barker TH, Baneyx G, Cardo-Vila M, Workman GA, Weaver M, Menon PM, Dedhar S, Rempel SA, Arap W, Pasqualini R, Vogel V, Sage EH. SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J Biol Chem 2005;280:36483-93.   DOI
48 Lee DW, Kook SH, Ji H, Lee SA, Choi KC, Lee KY, Lee JC. N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway. BMB Rep 2015;48:636-41.   DOI
49 Jemt T, Chai J, Harnett J, Heath MR, Hutton JE, Johns RB, McKenna S, McNamara DC, van Steenberghe D, Taylor R, Watson RM, Herrmann I. A 5-year prospective multicenter follow-up report on overdentures supported by osseointegrated implants. Int J Oral Maxillofac Implants 1996;11:291-8.
50 Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP, Belser UC, Lang NP. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res 1997;8:161-72.   DOI
51 Lambrecht JT, Filippi A, Kunzel AR, Schiel HJ. Long-term evaluation of submerged and nonsubmerged ITI solid-screw titanium implants: a 10-year life table analysis of 468 implants. Int J Oral Maxillofac Implants 2003;18:826-34.
52 Lindquist LW1, Carlsson GE, Jemt T. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res 1996;7:329-36.   DOI
53 Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100.   DOI
54 Albrektsson T. Direct bone anchorage of dental implants. J Prosthet Dent 1983;50:255-61.   DOI
55 Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.
56 Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 2005;20:425-31.
57 Puleo DA, Nanci A. Understanding and controlling the boneimplant interface. Biomaterials 1999;20:2311-21.   DOI