• 제목/요약/키워드: N distribution

검색결과 4,411건 처리시간 0.036초

CHARACTERIZATIONS OF THE LOMAX, EXPONENTIAL AND PARETO DISTRIBUTIONS BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young;Lim, Eun-Hyuk
    • 충청수학회지
    • /
    • 제22권2호
    • /
    • pp.149-153
    • /
    • 2009
  • Let {$X_{n},\;n\;\geq\;1$} be a sequence of independent and identically distributed random variables with absolutely continuous cumulative distribution function (cdf) F(x) and probability density function (pdf) f(x). Suppose $X_{U(m)},\;m = 1,\;2,\;{\cdots}$ be the upper record values of {$X_{n},\;n\;\geq\;1$}. It is shown that the linearity of the conditional expectation of $X_{U(n+2)}$ given $X_{U(n)}$ characterizes the lomax, exponential and pareto distributions.

  • PDF

CHARACTERIZATIONS OF THE POWER FUNCTION DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

  • Chang, Se-Kyung
    • 충청수학회지
    • /
    • 제20권2호
    • /
    • pp.139-146
    • /
    • 2007
  • In this paper, we present characterizations of the power function distribution by the independence of record values. We establish that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0, if and only if $\frac{X_{L(n)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$. And we prove that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0; if and only if $\frac{X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$. Also we characterize that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0, if and only if $\frac{X_{L(n)}+X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$.

  • PDF

CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

  • Chang, Se-Kyung
    • 충청수학회지
    • /
    • 제21권2호
    • /
    • pp.279-285
    • /
    • 2008
  • This paper presents some characterizations of the Weibull distribution by the independence of record values. We prove that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. We show that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. And we establish that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}+X_{U(n)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent.

  • PDF

CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE INDEPENDENCE OF THE UPPER RECORD VALUES

  • Chang, Se-Kyung;Lee, Min-Young
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권2호
    • /
    • pp.163-167
    • /
    • 2008
  • This paper presents characterizations of the Weibull distribution by the independence of record values. We prove that $X\;{\in}\;W\;EI ({\alpha})$, if and only if $\frac {X_{U(n+l)}} {X_{U(n+1)}\;+\;X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent or $\frac {X_{U(n)}} {X_{U(n+1)}\;+\;X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. And also we establish that $X\;{\in}\;W\;EI({\alpha})$, if and only if $\frac {X_{U(n+1)}\;-\;X_{U(n)}} {X_{U(n+1)}\;+\;X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent.

  • PDF

CONVERGENCE RATE OF EXTREMES FOR THE GENERALIZED SHORT-TAILED SYMMETRIC DISTRIBUTION

  • Lin, Fuming;Peng, Zuoxiang;Yu, Kaizhi
    • 대한수학회보
    • /
    • 제53권5호
    • /
    • pp.1549-1566
    • /
    • 2016
  • Denote $M_n$ the maximum of n independent and identically distributed variables from the generalized short-tailed symmetric distribution. This paper shows the pointwise convergence rate of the distribution of $M_n$ to exp($\exp(-e^{-x})$) and the supremum-metric-based convergence rate as well.

CHARACTERIZATIONS OF THE GAMMA DISTRIBUTION BY INDEPENDENCE PROPERTY OF RANDOM VARIABLES

  • Jin, Hyun-Woo;Lee, Min-Young
    • 충청수학회지
    • /
    • 제27권2호
    • /
    • pp.157-163
    • /
    • 2014
  • Let {$X_i$, $1{\leq}i{\leq}n$} be a sequence of i.i.d. sequence of positive random variables with common absolutely continuous cumulative distribution function F(x) and probability density function f(x) and $E(X^2)$ < ${\infty}$. The random variables X + Y and $\frac{(X-Y)^2}{(X+Y)^2}$ are independent if and only if X and Y have gamma distributions. In addition, the random variables $S_n$ and $\frac{\sum_{i=1}^{m}(X_i)^2}{(S_n)^2}$ with $S_n=\sum_{i=1}^{n}X_i$ are independent for $1{\leq}m$ < n if and only if $X_i$ has gamma distribution for $i=1,{\cdots},n$.

The Counting Processes that the Number of Events in [0,t] has Generalized Poisson Distribution

  • Park, Jeong-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제7권2호
    • /
    • pp.273-281
    • /
    • 1996
  • It is derived that conditions of counting process ($\{N(t){\mid}t\;{\geq}\;0\}$) in which the number of events in time interval [0, t] has a (n, n+1)-generalized Poisson distribution with parameters (${\theta}t,\;{\lambda}$) and a generalized inflated Poisson distribution with parameters (${\{\lambda}t,\;{\omega}\}$.

  • PDF

ON CHARACTERIZATIONS OF THE PARETO DISTRIBUTION BY THE INDEPENDENT PROPERTY OF UPPER RECORD VALUES

  • Lee, Min-Young;Lim, Eun-Hyuk
    • 충청수학회지
    • /
    • 제24권1호
    • /
    • pp.85-89
    • /
    • 2011
  • We present characterizations of the Pareto distribution by the independent property of upper record values in such a way that F(x) has a Pareto distribution if and only if $\frac{X_{U(n)}}{X_{U(m)}}$ and $X_{U(m)}$ are independent for $1{\leq}m. Futhermore, the characterizations should find that F(x) has a Pareto distribution if and only if $\frac{X_{U(n)}}{X_{U(n)}{\pm}X_{U(m)}}$ and $X_{U(m)}$ are independent for $1{\leq}m.

THE ASYMPTOTIC BEHAVIOUR OF THE AVERAGING VALUE OF SOME DIRICHLET SERIES USING POISSON DISTRIBUTION

  • Jo, Sihun
    • East Asian mathematical journal
    • /
    • 제35권1호
    • /
    • pp.67-75
    • /
    • 2019
  • We investigate the averaging value of a random sampling of a Dirichlet series with some condition using Poisson distribution. Our result is the following: Let $L(s)={\sum}^{\infty}_{n=1}{\frac{a_n}{n^s}}$ be a Dirichlet series that converges absolutely for Re(s) > 1. If $X_t$ is an increasing random sampling with Poisson distribution and there exists a number $0<{\alpha}<{\frac{1}{2}}$ such that ${\sum}_{n{\leq}u}a_n{\ll}u^{\alpha}$, then we have $${\mathbb{E}}L(1/2+iX_t)=O(t^{\alpha}{\sqrt{{\log}t}})$$, for all sufficiently large t in ${\mathbb{R}}$. As a result, we get the behaviour of $L({\frac{1}{2}}+it)$ such that L is a Dirichlet L-function or a modular L-function, when t is sampled by the Poisson distribution.

CHRACTERIZATIONS OF THE PARETO DISTRIBUTION BY RECORD VALUES

  • Chang, Se-Kyung
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.955-961
    • /
    • 2009
  • In this paper, we establish some characterizations which is satisfied by the independence of the upper record values from the Pareto distribution. We prove that $X\;{\in}\;PAR(1,\;{\beta})$, $\beta$ > 0, if and only if $\frac{X_{U(n)}}{X_{U(m)}}$ and $X_{U(m)}$, $1\;{\le}\;m\;<\;n$ are independent. We show that $X\;{\in}\;PAR(1,\;{\beta})$, $\beta$ > 0 if and only if $\frac{X_{U(n)}+X_{U{(n+1)}}}{X_{U(n)}}$ and $X_{U(n)}$, $n\;{\ge}\;1$ are independent. And we characterize that $X\;{\in}\;PAR(1,\;{\beta})$, $\beta$ > 0, if and only if $\frac{X_{U(n)}}{X_{U(n)}+X_{U{(n+1)}}}$ and $X_{U(n)}$, $n\;{\ge}\;1$ are independent.

  • PDF